-
Notifications
You must be signed in to change notification settings - Fork 1.2k
feat: Introduce HF Transformers to ModelBuilder #4368
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
734ec60
feat: Introduce HF Transformers to ModelBuilder
samruds 6d569ce
Add integ test
samruds f0d33e7
Revert the change in comment for tgi prepare
samruds 354bc4f
Capitalize enum
samruds 57511ab
Address PR feedbacks
samruds e0b2961
Format files
samruds ae8ac1d
Merge branch 'master' into master
samruds 8a23a95
Format files
samruds c6a7455
Address PR feedbacks
samruds c7aaf6d
Merge branch 'master' into master
samruds a81e0fa
Merge branch 'master' into master
samruds 3f778ad
Address PR feedbacks
samruds 617dc82
Merge branch 'master' into master
samruds ba850c2
Fix test builds
samruds File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,280 @@ | ||
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You | ||
# may not use this file except in compliance with the License. A copy of | ||
# the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "license" file accompanying this file. This file is | ||
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific | ||
# language governing permissions and limitations under the License. | ||
"""Transformers build logic with model builder""" | ||
from __future__ import absolute_import | ||
import logging | ||
from abc import ABC, abstractmethod | ||
from typing import Type | ||
from packaging.version import Version | ||
|
||
from sagemaker.model import Model | ||
from sagemaker import image_uris | ||
from sagemaker.serve.utils.local_hardware import ( | ||
_get_nb_instance, | ||
) | ||
from sagemaker.djl_inference.model import _get_model_config_properties_from_hf | ||
from sagemaker.huggingface import HuggingFaceModel | ||
from sagemaker.serve.model_server.multi_model_server.prepare import ( | ||
_create_dir_structure, | ||
) | ||
from sagemaker.serve.utils.predictors import TransformersLocalModePredictor | ||
from sagemaker.serve.utils.types import ModelServer | ||
from sagemaker.serve.mode.function_pointers import Mode | ||
from sagemaker.serve.utils.telemetry_logger import _capture_telemetry | ||
from sagemaker.base_predictor import PredictorBase | ||
from sagemaker.huggingface.llm_utils import get_huggingface_model_metadata | ||
|
||
logger = logging.getLogger(__name__) | ||
DEFAULT_TIMEOUT = 1800 | ||
|
||
|
||
"""Retrieves images for different libraries - Pytorch, TensorFlow from HuggingFace hub | ||
""" | ||
|
||
|
||
# pylint: disable=W0108 | ||
class Transformers(ABC): | ||
samruds marked this conversation as resolved.
Show resolved
Hide resolved
|
||
"""Transformers build logic with ModelBuilder()""" | ||
|
||
def __init__(self): | ||
self.model = None | ||
self.serve_settings = None | ||
self.sagemaker_session = None | ||
self.model_path = None | ||
self.dependencies = None | ||
self.modes = None | ||
self.mode = None | ||
self.model_server = None | ||
self.image_uri = None | ||
self._original_deploy = None | ||
self.hf_model_config = None | ||
self._default_data_type = None | ||
self.pysdk_model = None | ||
self.env_vars = None | ||
self.nb_instance_type = None | ||
self.ram_usage_model_load = None | ||
self.secret_key = None | ||
self.role_arn = None | ||
self.py_version = None | ||
self.tensorflow_version = None | ||
self.pytorch_version = None | ||
self.instance_type = None | ||
self.schema_builder = None | ||
|
||
@abstractmethod | ||
def _prepare_for_mode(self): | ||
"""Abstract method""" | ||
|
||
def _create_transformers_model(self) -> Type[Model]: | ||
"""Initializes the model after fetching image | ||
|
||
1. Get the metadata for deciding framework | ||
2. Get the supported hugging face versions | ||
3. Create model | ||
4. Fetch image | ||
|
||
Returns: | ||
pysdk_model: Corresponding model instance | ||
""" | ||
|
||
hf_model_md = get_huggingface_model_metadata( | ||
self.model, self.env_vars.get("HUGGING_FACE_HUB_TOKEN") | ||
) | ||
hf_config = image_uris.config_for_framework("huggingface").get("inference") | ||
config = hf_config["versions"] | ||
base_hf_version = sorted(config.keys(), key=lambda v: Version(v))[0] | ||
|
||
if hf_model_md is None: | ||
raise ValueError("Could not fetch HF metadata") | ||
|
||
if "pytorch" in hf_model_md.get("tags"): | ||
self.pytorch_version = self._get_supported_version( | ||
hf_config, base_hf_version, "pytorch" | ||
) | ||
self.py_version = config[base_hf_version]["pytorch" + self.pytorch_version].get( | ||
"py_versions" | ||
)[-1] | ||
pysdk_model = HuggingFaceModel( | ||
env=self.env_vars, | ||
role=self.role_arn, | ||
sagemaker_session=self.sagemaker_session, | ||
py_version=self.py_version, | ||
transformers_version=base_hf_version, | ||
pytorch_version=self.pytorch_version, | ||
) | ||
elif "keras" in hf_model_md.get("tags") or "tensorflow" in hf_model_md.get("tags"): | ||
self.tensorflow_version = self._get_supported_version( | ||
hf_config, base_hf_version, "tensorflow" | ||
) | ||
self.py_version = config[base_hf_version]["tensorflow" + self.tensorflow_version].get( | ||
"py_versions" | ||
)[-1] | ||
pysdk_model = HuggingFaceModel( | ||
env=self.env_vars, | ||
role=self.role_arn, | ||
sagemaker_session=self.sagemaker_session, | ||
py_version=self.py_version, | ||
transformers_version=base_hf_version, | ||
tensorflow_version=self.tensorflow_version, | ||
) | ||
|
||
if self.mode == Mode.LOCAL_CONTAINER: | ||
self.image_uri = pysdk_model.serving_image_uri( | ||
self.sagemaker_session.boto_region_name, "local" | ||
) | ||
else: | ||
self.image_uri = pysdk_model.serving_image_uri( | ||
self.sagemaker_session.boto_region_name, self.instance_type | ||
) | ||
|
||
logger.info("Detected %s. Proceeding with the the deployment.", self.image_uri) | ||
|
||
self._original_deploy = pysdk_model.deploy | ||
pysdk_model.deploy = self._transformers_model_builder_deploy_wrapper | ||
return pysdk_model | ||
|
||
@_capture_telemetry("transformers.deploy") | ||
def _transformers_model_builder_deploy_wrapper(self, *args, **kwargs) -> Type[PredictorBase]: | ||
"""Returns predictor depending on local or sagemaker endpoint mode | ||
|
||
Returns: | ||
TransformersLocalModePredictor: During local mode deployment | ||
""" | ||
timeout = kwargs.get("model_data_download_timeout") | ||
if timeout: | ||
self.env_vars.update({"MODEL_LOADING_TIMEOUT": str(timeout)}) | ||
|
||
if "mode" in kwargs and kwargs.get("mode") != self.mode: | ||
overwrite_mode = kwargs.get("mode") | ||
# mode overwritten by customer during model.deploy() | ||
logger.warning( | ||
"Deploying in %s Mode, overriding existing configurations set for %s mode", | ||
overwrite_mode, | ||
self.mode, | ||
) | ||
|
||
if overwrite_mode == Mode.SAGEMAKER_ENDPOINT: | ||
self.mode = self.pysdk_model.mode = Mode.SAGEMAKER_ENDPOINT | ||
elif overwrite_mode == Mode.LOCAL_CONTAINER: | ||
self._prepare_for_mode() | ||
self.mode = self.pysdk_model.mode = Mode.LOCAL_CONTAINER | ||
else: | ||
raise ValueError("Mode %s is not supported!" % overwrite_mode) | ||
|
||
self._set_instance() | ||
|
||
serializer = self.schema_builder.input_serializer | ||
deserializer = self.schema_builder._output_deserializer | ||
if self.mode == Mode.LOCAL_CONTAINER: | ||
timeout = kwargs.get("model_data_download_timeout") | ||
|
||
predictor = TransformersLocalModePredictor( | ||
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer | ||
) | ||
|
||
self.modes[str(Mode.LOCAL_CONTAINER)].create_server( | ||
self.image_uri, | ||
timeout if timeout else DEFAULT_TIMEOUT, | ||
None, | ||
predictor, | ||
self.pysdk_model.env, | ||
jumpstart=False, | ||
) | ||
return predictor | ||
|
||
if "mode" in kwargs: | ||
del kwargs["mode"] | ||
if "role" in kwargs: | ||
self.pysdk_model.role = kwargs.get("role") | ||
del kwargs["role"] | ||
|
||
# set model_data to uncompressed s3 dict | ||
self.pysdk_model.model_data, env_vars = self._prepare_for_mode() | ||
self.env_vars.update(env_vars) | ||
self.pysdk_model.env.update(self.env_vars) | ||
|
||
if "endpoint_logging" not in kwargs: | ||
kwargs["endpoint_logging"] = True | ||
|
||
if "initial_instance_count" not in kwargs: | ||
kwargs.update({"initial_instance_count": 1}) | ||
|
||
predictor = self._original_deploy(*args, **kwargs) | ||
|
||
predictor.serializer = serializer | ||
predictor.deserializer = deserializer | ||
return predictor | ||
|
||
def _build_transformers_env(self): | ||
"""Build model for hugging face deployment using""" | ||
self.nb_instance_type = _get_nb_instance() | ||
|
||
_create_dir_structure(self.model_path) | ||
if not hasattr(self, "pysdk_model"): | ||
self.env_vars.update({"HF_MODEL_ID": self.model}) | ||
|
||
logger.info(self.env_vars) | ||
|
||
# TODO: Move to a helper function | ||
if hasattr(self.env_vars, "HF_API_TOKEN"): | ||
self.hf_model_config = _get_model_config_properties_from_hf( | ||
self.model, self.env_vars.get("HF_API_TOKEN") | ||
) | ||
else: | ||
self.hf_model_config = _get_model_config_properties_from_hf( | ||
self.model, self.env_vars.get("HUGGING_FACE_HUB_TOKEN") | ||
) | ||
|
||
self.pysdk_model = self._create_transformers_model() | ||
|
||
if self.mode == Mode.LOCAL_CONTAINER: | ||
self._prepare_for_mode() | ||
|
||
return self.pysdk_model | ||
|
||
def _set_instance(self, **kwargs): | ||
"""Set the instance : Given the detected notebook type or provided instance type""" | ||
if self.mode == Mode.SAGEMAKER_ENDPOINT: | ||
if self.nb_instance_type and "instance_type" not in kwargs: | ||
kwargs.update({"instance_type": self.nb_instance_type}) | ||
elif self.instance_type and "instance_type" not in kwargs: | ||
kwargs.update({"instance_type": self.instance_type}) | ||
else: | ||
raise ValueError( | ||
"Instance type must be provided when deploying to SageMaker Endpoint mode." | ||
) | ||
logger.info("Setting instance type to %s", self.instance_type) | ||
|
||
def _get_supported_version(self, hf_config, hugging_face_version, base_fw): | ||
"""Uses the hugging face json config to pick supported versions""" | ||
version_config = hf_config.get("versions").get(hugging_face_version) | ||
versions_to_return = list() | ||
for key in list(version_config.keys()): | ||
if key.startswith(base_fw): | ||
base_fw_version = key[len(base_fw) :] | ||
if len(hugging_face_version.split(".")) == 2: | ||
base_fw_version = ".".join(base_fw_version.split(".")[:-1]) | ||
versions_to_return.append(base_fw_version) | ||
return sorted(versions_to_return)[0] | ||
|
||
def _build_for_transformers(self): | ||
"""Method that triggers model build | ||
|
||
Returns:PySDK model | ||
""" | ||
self.secret_key = None | ||
self.model_server = ModelServer.MMS | ||
|
||
self._build_transformers_env() | ||
|
||
return self.pysdk_model |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.