Skip to content

feature: repack_model support dependencies and code location #821

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
May 30, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 19 additions & 13 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -448,21 +448,27 @@ def _upload_code(self, key_prefix, repack=False):
local_code = utils.get_config_value('local.local_code', self.sagemaker_session.config)
if self.sagemaker_session.local_mode and local_code:
self.uploaded_code = None
else:
if not repack:
bucket = self.bucket or self.sagemaker_session.default_bucket()
self.uploaded_code = fw_utils.tar_and_upload_dir(session=self.sagemaker_session.boto_session,
bucket=bucket,
s3_key_prefix=key_prefix,
script=self.entry_point,
directory=self.source_dir,
dependencies=self.dependencies)
elif not repack:
bucket = self.bucket or self.sagemaker_session.default_bucket()
self.uploaded_code = fw_utils.tar_and_upload_dir(session=self.sagemaker_session.boto_session,
bucket=bucket,
s3_key_prefix=key_prefix,
script=self.entry_point,
directory=self.source_dir,
dependencies=self.dependencies)

if repack:
self.repacked_model_data = utils.repack_model(inference_script=self.entry_point,
source_directory=self.source_dir,
model_uri=self.model_data,
sagemaker_session=self.sagemaker_session)
bucket = self.bucket or self.sagemaker_session.default_bucket()
repacked_model_data = 's3://' + os.path.join(bucket, key_prefix, 'model.tar.gz')

utils.repack_model(inference_script=self.entry_point,
source_directory=self.source_dir,
dependencies=self.dependencies,
model_uri=self.model_data,
repacked_model_uri=repacked_model_data,
sagemaker_session=self.sagemaker_session)

self.repacked_model_data = repacked_model_data
self.uploaded_code = UploadedCode(s3_prefix=self.repacked_model_data,
script_name=os.path.basename(self.entry_point))

Expand Down
6 changes: 3 additions & 3 deletions src/sagemaker/mxnet/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,21 +92,21 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
Returns:
dict[str, str]: A container definition object usable with the CreateModel API.
"""
mms_version = parse_version(self.framework_version) >= parse_version(self._LOWEST_MMS_VERSION)
is_mms_version = parse_version(self.framework_version) >= parse_version(self._LOWEST_MMS_VERSION)

deploy_image = self.image
if not deploy_image:
region_name = self.sagemaker_session.boto_session.region_name

framework_name = self.__framework_name__
if mms_version:
if is_mms_version:
framework_name += '-serving'

deploy_image = create_image_uri(region_name, framework_name, instance_type,
self.framework_version, self.py_version, accelerator_type=accelerator_type)

deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(deploy_key_prefix, mms_version)
self._upload_code(deploy_key_prefix, is_mms_version)
deploy_env = dict(self.env)
deploy_env.update(self._framework_env_vars())

Expand Down
16 changes: 12 additions & 4 deletions src/sagemaker/tensorflow/serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from __future__ import absolute_import

import logging
import os

import sagemaker
from sagemaker.content_types import CONTENT_TYPE_JSON
Expand Down Expand Up @@ -128,10 +129,17 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
env = self._get_container_env()

if self.entry_point:
model_data = sagemaker.utils.repack_model(self.entry_point,
self.source_dir,
self.model_data,
self.sagemaker_session)
key_prefix = sagemaker.fw_utils.model_code_key_prefix(self.key_prefix, self.name, image)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see there are unit tests added in test_mxnet, but do we need to have unit test for serving.py and model.py class as well?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good call, I will do it.


bucket = self.bucket or self.sagemaker_session.default_bucket()
model_data = 's3://' + os.path.join(bucket, key_prefix, 'model.tar.gz')

sagemaker.utils.repack_model(self.entry_point,
self.source_dir,
self.dependencies,
self.model_data,
model_data,
self.sagemaker_session)
else:
model_data = self.model_data

Expand Down
110 changes: 72 additions & 38 deletions src/sagemaker/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,6 @@

import six

import sagemaker

ECR_URI_PATTERN = r'^(\d+)(\.)dkr(\.)ecr(\.)(.+)(\.)(amazonaws.com|c2s.ic.gov)(/)(.*:.*)$'


Expand Down Expand Up @@ -300,7 +298,12 @@ def _tmpdir(suffix='', prefix='tmp'):
shutil.rmtree(tmp)


def repack_model(inference_script, source_directory, model_uri, sagemaker_session):
def repack_model(inference_script,
source_directory,
dependencies,
model_uri,
repacked_model_uri,
sagemaker_session):
"""Unpack model tarball and creates a new model tarball with the provided code script.

This function does the following:
Expand All @@ -311,60 +314,91 @@ def repack_model(inference_script, source_directory, model_uri, sagemaker_sessio
Args:
inference_script (str): path or basename of the inference script that will be packed into the model
source_directory (str): path including all the files that will be packed into the model
dependencies (list[str]): A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container (default: []).
The library folders will be copied to SageMaker in the same folder where the entrypoint is copied.
Example:

The following call
>>> Estimator(entry_point='train.py', dependencies=['my/libs/common', 'virtual-env'])
results in the following inside the container:

>>> $ ls

>>> opt/ml/code
>>> |------ train.py
>>> |------ common
>>> |------ virtual-env

repacked_model_uri (str): path or file system location where the new model will be saved
model_uri (str): S3 or file system location of the original model tar
sagemaker_session (:class:`sagemaker.session.Session`): a sagemaker session to interact with S3.

Returns:
str: path to the new packed model
"""
new_model_name = 'model-%s.tar.gz' % sagemaker.utils.sagemaker_short_timestamp()
dependencies = dependencies or []

with _tmpdir() as tmp:
tmp_model_dir = os.path.join(tmp, 'model')
os.mkdir(tmp_model_dir)
model_dir = _extract_model(model_uri, sagemaker_session, tmp)

model_from_s3 = model_uri.lower().startswith('s3://')
if model_from_s3:
local_model_path = os.path.join(tmp, 'tar_file')
download_file_from_url(model_uri, local_model_path, sagemaker_session)
_create_or_update_code_dir(model_dir, inference_script, source_directory, dependencies, sagemaker_session, tmp)

new_model_path = os.path.join(tmp, new_model_name)
else:
local_model_path = model_uri.replace('file://', '')
new_model_path = os.path.join(os.path.dirname(local_model_path), new_model_name)
tmp_model_path = os.path.join(tmp, 'temp-model.tar.gz')
with tarfile.open(tmp_model_path, mode='w:gz') as t:
t.add(model_dir, arcname=os.path.sep)

with tarfile.open(name=local_model_path, mode='r:gz') as t:
t.extractall(path=tmp_model_dir)
_save_model(repacked_model_uri, tmp_model_path, sagemaker_session)

code_dir = os.path.join(tmp_model_dir, 'code')
if os.path.exists(code_dir):
shutil.rmtree(code_dir, ignore_errors=True)

if source_directory and source_directory.lower().startswith('s3://'):
local_code_path = os.path.join(tmp, 'local_code.tar.gz')
download_file_from_url(source_directory, local_code_path, sagemaker_session)
def _save_model(repacked_model_uri, tmp_model_path, sagemaker_session):
if repacked_model_uri.lower().startswith('s3://'):
url = parse.urlparse(repacked_model_uri)
bucket, key = url.netloc, url.path.lstrip('/')
new_key = key.replace(os.path.basename(key), os.path.basename(repacked_model_uri))

with tarfile.open(name=local_code_path, mode='r:gz') as t:
t.extractall(path=code_dir)
sagemaker_session.boto_session.resource('s3').Object(bucket, new_key).upload_file(
tmp_model_path)
else:
shutil.move(tmp_model_path, repacked_model_uri.replace('file://', ''))

elif source_directory:
shutil.copytree(source_directory, code_dir)
else:
os.mkdir(code_dir)
shutil.copy2(inference_script, code_dir)

with tarfile.open(new_model_path, mode='w:gz') as t:
t.add(tmp_model_dir, arcname=os.path.sep)
def _create_or_update_code_dir(model_dir, inference_script, source_directory,
dependencies, sagemaker_session, tmp):
code_dir = os.path.join(model_dir, 'code')
if os.path.exists(code_dir):
shutil.rmtree(code_dir, ignore_errors=True)
if source_directory and source_directory.lower().startswith('s3://'):
local_code_path = os.path.join(tmp, 'local_code.tar.gz')
download_file_from_url(source_directory, local_code_path, sagemaker_session)

with tarfile.open(name=local_code_path, mode='r:gz') as t:
t.extractall(path=code_dir)

if model_from_s3:
url = parse.urlparse(model_uri)
bucket, key = url.netloc, url.path.lstrip('/')
new_key = key.replace(os.path.basename(key), new_model_name)
elif source_directory:
shutil.copytree(source_directory, code_dir)
else:
os.mkdir(code_dir)
shutil.copy2(inference_script, code_dir)

sagemaker_session.boto_session.resource('s3').Object(bucket, new_key).upload_file(new_model_path)
return 's3://%s/%s' % (bucket, new_key)
for dependency in dependencies:
if os.path.isdir(dependency):
shutil.copytree(dependency, code_dir)
else:
return 'file://%s' % new_model_path
shutil.copy2(dependency, code_dir)


def _extract_model(model_uri, sagemaker_session, tmp):
tmp_model_dir = os.path.join(tmp, 'model')
os.mkdir(tmp_model_dir)
if model_uri.lower().startswith('s3://'):
local_model_path = os.path.join(tmp, 'tar_file')
download_file_from_url(model_uri, local_model_path, sagemaker_session)
else:
local_model_path = model_uri.replace('file://', '')
with tarfile.open(name=local_model_path, mode='r:gz') as t:
t.extractall(path=tmp_model_dir)
return tmp_model_dir


def download_file_from_url(url, dst, sagemaker_session):
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import json

import dependency

def input_handler(data, context):
data = json.loads(data.read().decode('utf-8'))
new_values = [x + 1 for x in data['instances']]
dumps = json.dumps({'instances': new_values})
return dumps


def output_handler(data, context):
response_content_type = context.accept_header
prediction = data.content
return prediction, response_content_type
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
Expand All @@ -12,7 +12,6 @@
# language governing permissions and limitations under the License.
import json


def input_handler(data, context):
data = json.loads(data.read().decode('utf-8'))
new_values = [x + 1 for x in data['instances']]
Expand Down
16 changes: 10 additions & 6 deletions tests/integ/test_tfs.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,8 +84,8 @@ def tfs_predictor_with_model_and_entry_point_same_tar(instance_type,


@pytest.fixture(scope='module')
def tfs_predictor_with_model_and_entry_point_separated(instance_type,
sagemaker_session, tf_full_version):
def tfs_predictor_with_model_and_entry_point_and_dependencies(instance_type,
sagemaker_session, tf_full_version):
endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving')

model_data = sagemaker_session.upload_data(
Expand All @@ -96,10 +96,14 @@ def tfs_predictor_with_model_and_entry_point_separated(instance_type,
with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name,
sagemaker_session):
entry_point = os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-model-with-inference/code/inference.py')
'tfs/tfs-test-entrypoint-and-dependencies/inference.py')
dependencies = [os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-entrypoint-and-dependencies/dependency.py')]

model = Model(entry_point=entry_point,
model_data=model_data,
role='SageMakerRole',
dependencies=dependencies,
framework_version=tf_full_version,
sagemaker_session=sagemaker_session)
predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name)
Expand Down Expand Up @@ -152,12 +156,12 @@ def test_predict_with_entry_point(tfs_predictor_with_model_and_entry_point_same_
assert expected_result == result


def test_predict_with_model_and_entry_point_separated(
tfs_predictor_with_model_and_entry_point_separated):
def test_predict_with_model_and_entry_point_and_dependencies_separated(
tfs_predictor_with_model_and_entry_point_and_dependencies):
input_data = {'instances': [1.0, 2.0, 5.0]}
expected_result = {'predictions': [4.0, 4.5, 6.0]}

result = tfs_predictor_with_model_and_entry_point_separated.predict(input_data)
result = tfs_predictor_with_model_and_entry_point_and_dependencies.predict(input_data)
assert expected_result == result


Expand Down
Loading