|
84 | 84 | },
|
85 | 85 | {
|
86 | 86 | "cell_type": "code",
|
87 |
| - "execution_count": 4, |
| 87 | + "execution_count": 6, |
88 | 88 | "metadata": {},
|
89 | 89 | "outputs": [
|
90 | 90 | {
|
|
266 | 266 | },
|
267 | 267 | {
|
268 | 268 | "ename": "AttributeError",
|
269 |
| - "evalue": "module '__main__' has no attribute 'mean'", |
| 269 | + "evalue": "Class NDArray does not have method __eq__", |
270 | 270 | "output_type": "error",
|
271 | 271 | "traceback": [
|
272 | 272 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 273 | + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", |
| 274 | + "File \u001b[0;32m~/p/egg-smol-python/python/egglog/runtime.py:388\u001b[0m, in \u001b[0;36m_special_method\u001b[0;34m(self, __name, *args)\u001b[0m\n\u001b[1;32m 387\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 388\u001b[0m method \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_decls__\u001b[39m.\u001b[39;49mget_class_decl(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_typed_expr__\u001b[39m.\u001b[39;49mtp\u001b[39m.\u001b[39;49mname)\u001b[39m.\u001b[39;49mpreserved_methods[__name]\n\u001b[1;32m 389\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n", |
| 275 | + "\u001b[0;31mKeyError\u001b[0m: '__eq__'", |
| 276 | + "\nDuring handling of the above exception, another exception occurred:\n", |
| 277 | + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", |
| 278 | + "File \u001b[0;32m~/p/egg-smol-python/python/egglog/runtime.py:318\u001b[0m, in \u001b[0;36mRuntimeMethod.__post_init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 318\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_fn_decl__ \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_decls__\u001b[39m.\u001b[39;49mget_function_decl(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_callable_ref__)\n\u001b[1;32m 319\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n", |
| 279 | + "File \u001b[0;32m~/p/egg-smol-python/python/egglog/declarations.py:192\u001b[0m, in \u001b[0;36mModuleDeclarations.get_function_decl\u001b[0;34m(self, ref)\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[39mpass\u001b[39;00m\n\u001b[0;32m--> 192\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mKeyError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mFunction \u001b[39m\u001b[39m{\u001b[39;00mref\u001b[39m}\u001b[39;00m\u001b[39m not found\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 193\u001b[0m \u001b[39melse\u001b[39;00m:\n", |
| 280 | + "\u001b[0;31mKeyError\u001b[0m: \"Function MethodRef(class_name='NDArray', method_name='__eq__') not found\"", |
| 281 | + "\nDuring handling of the above exception, another exception occurred:\n", |
273 | 282 | "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
274 |
| - "Cell \u001b[0;32mIn[4], line 682\u001b[0m\n\u001b[1;32m 668\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 669\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 670\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 671\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 678\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 679\u001b[0m )\n\u001b[0;32m--> 682\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 684\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 685\u001b[0m \n\u001b[1;32m 686\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 687\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
| 283 | + "Cell \u001b[0;32mIn[6], line 700\u001b[0m\n\u001b[1;32m 686\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 687\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 688\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 689\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 696\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 697\u001b[0m )\n\u001b[0;32m--> 700\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 702\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 703\u001b[0m \n\u001b[1;32m 704\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 705\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
275 | 284 | "Cell \u001b[0;32mIn[1], line 15\u001b[0m, in \u001b[0;36mfit\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[39mwith\u001b[39;00m config_context(array_api_dispatch\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m):\n\u001b[1;32m 14\u001b[0m lda \u001b[39m=\u001b[39m LinearDiscriminantAnalysis(n_components\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m)\n\u001b[0;32m---> 15\u001b[0m X_r2 \u001b[39m=\u001b[39m lda\u001b[39m.\u001b[39;49mfit(X, y)\u001b[39m.\u001b[39mtransform(X)\n\u001b[1;32m 16\u001b[0m \u001b[39mreturn\u001b[39;00m X_r2\n\u001b[1;32m 18\u001b[0m target_names \u001b[39m=\u001b[39m iris\u001b[39m.\u001b[39mtarget_names\n",
|
276 | 285 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/base.py:1151\u001b[0m, in \u001b[0;36m_fit_context.<locals>.decorator.<locals>.wrapper\u001b[0;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1144\u001b[0m estimator\u001b[39m.\u001b[39m_validate_params()\n\u001b[1;32m 1146\u001b[0m \u001b[39mwith\u001b[39;00m config_context(\n\u001b[1;32m 1147\u001b[0m skip_parameter_validation\u001b[39m=\u001b[39m(\n\u001b[1;32m 1148\u001b[0m prefer_skip_nested_validation \u001b[39mor\u001b[39;00m global_skip_validation\n\u001b[1;32m 1149\u001b[0m )\n\u001b[1;32m 1150\u001b[0m ):\n\u001b[0;32m-> 1151\u001b[0m \u001b[39mreturn\u001b[39;00m fit_method(estimator, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
|
277 | 286 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:629\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 624\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 625\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mcovariance estimator \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 626\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mis not supported \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 627\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mwith svd solver. Try another solver\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 628\u001b[0m )\n\u001b[0;32m--> 629\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_solve_svd(X, y)\n\u001b[1;32m 630\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolver \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mlsqr\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 631\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_solve_lstsq(\n\u001b[1;32m 632\u001b[0m X,\n\u001b[1;32m 633\u001b[0m y,\n\u001b[1;32m 634\u001b[0m shrinkage\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mshrinkage,\n\u001b[1;32m 635\u001b[0m covariance_estimator\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator,\n\u001b[1;32m 636\u001b[0m )\n",
|
278 | 287 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:501\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis._solve_svd\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 498\u001b[0m n_samples, n_features \u001b[39m=\u001b[39m X\u001b[39m.\u001b[39mshape\n\u001b[1;32m 499\u001b[0m n_classes \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclasses_\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]\n\u001b[0;32m--> 501\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmeans_ \u001b[39m=\u001b[39m _class_means(X, y)\n\u001b[1;32m 502\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstore_covariance:\n\u001b[1;32m 503\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_ \u001b[39m=\u001b[39m _class_cov(X, y, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpriors_)\n",
|
279 |
| - "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:121\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[39mprint\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[1;32m 120\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]):\n\u001b[0;32m--> 121\u001b[0m means[i, :] \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39;49mmean(X[y \u001b[39m==\u001b[39m i], axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m 122\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 123\u001b[0m \u001b[39m# TODO: Explore the choice of using bincount + add.at as it seems sub optimal\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# from a performance-wise\u001b[39;00m\n\u001b[1;32m 125\u001b[0m cnt \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mbincount(y)\n", |
280 |
| - "\u001b[0;31mAttributeError\u001b[0m: module '__main__' has no attribute 'mean'" |
| 288 | + "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:121\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[39mprint\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[1;32m 120\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]):\n\u001b[0;32m--> 121\u001b[0m means[i, :] \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39mmean(X[y \u001b[39m==\u001b[39;49m i], axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m 122\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 123\u001b[0m \u001b[39m# TODO: Explore the choice of using bincount + add.at as it seems sub optimal\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# from a performance-wise\u001b[39;00m\n\u001b[1;32m 125\u001b[0m cnt \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mbincount(y)\n", |
| 289 | + "File \u001b[0;32m~/p/egg-smol-python/python/egglog/runtime.py:390\u001b[0m, in \u001b[0;36m_special_method\u001b[0;34m(self, __name, *args)\u001b[0m\n\u001b[1;32m 388\u001b[0m method \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_decls__\u001b[39m.\u001b[39mget_class_decl(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_typed_expr__\u001b[39m.\u001b[39mtp\u001b[39m.\u001b[39mname)\u001b[39m.\u001b[39mpreserved_methods[__name]\n\u001b[1;32m 389\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[0;32m--> 390\u001b[0m \u001b[39mreturn\u001b[39;00m RuntimeMethod(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_decls__, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__egg_typed_expr__, __name)(\u001b[39m*\u001b[39margs)\n\u001b[1;32m 391\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 392\u001b[0m \u001b[39mreturn\u001b[39;00m method(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39margs)\n", |
| 290 | + "File \u001b[0;32m<string>:6\u001b[0m, in \u001b[0;36m__init__\u001b[0;34m(self, __egg_decls__, __egg_typed_expr__, __egg_method_name__)\u001b[0m\n", |
| 291 | + "File \u001b[0;32m~/p/egg-smol-python/python/egglog/runtime.py:320\u001b[0m, in \u001b[0;36mRuntimeMethod.__post_init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 318\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_fn_decl__ \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_decls__\u001b[39m.\u001b[39mget_function_decl(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_callable_ref__)\n\u001b[1;32m 319\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[0;32m--> 320\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mAttributeError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mClass \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclass_name\u001b[39m}\u001b[39;00m\u001b[39m does not have method \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__egg_method_name__\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n", |
| 292 | + "\u001b[0;31mAttributeError\u001b[0m: Class NDArray does not have method __eq__" |
281 | 293 | ]
|
282 | 294 | }
|
283 | 295 | ],
|
|
766 | 778 | "converter(Device, OptionalDevice, lambda x: OptionalDevice.some(x))\n",
|
767 | 779 | "\n",
|
768 | 780 | "\n",
|
| 781 | + "@egraph.class_\n", |
| 782 | + "class OptionalTupleInt(Expr):\n", |
| 783 | + " none: ClassVar[OptionalTupleInt]\n", |
| 784 | + "\n", |
| 785 | + " @classmethod\n", |
| 786 | + " def some(cls, value: TupleInt) -> OptionalTupleInt:\n", |
| 787 | + " ...\n", |
| 788 | + "\n", |
| 789 | + "\n", |
| 790 | + "converter(type(None), OptionalTupleInt, lambda x: OptionalTupleInt.none)\n", |
| 791 | + "converter(TupleInt, OptionalTupleInt, lambda x: OptionalTupleInt.some(x))\n", |
| 792 | + "converter(int, OptionalTupleInt, lambda x: OptionalTupleInt.some(TupleInt(Int(x))))\n", |
| 793 | + "\n", |
| 794 | + "\n", |
| 795 | + "\n", |
769 | 796 | "\n",
|
770 | 797 | "\n",
|
771 | 798 | "@egraph.function\n",
|
|
898 | 925 | "@egraph.function\n",
|
899 | 926 | "def zeros(shape: TupleInt, dtype: OptionalDType = OptionalDType.none, device: OptionalDevice = OptionalDevice.none) -> NDArray:\n",
|
900 | 927 | " ...\n",
|
| 928 | + "@egraph.function\n", |
| 929 | + "def mean(x: NDArray, axis: OptionalTupleInt = OptionalTupleInt.none) -> NDArray: ...\n", |
| 930 | + "\n", |
901 | 931 | "\n",
|
902 | 932 | "linalg = sys.modules[__name__]\n",
|
903 | 933 | "\n",
|
|
0 commit comments