Skip to content

Add Doc for Converting Granite Vision -> GGUF #12006

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 25, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
183 changes: 183 additions & 0 deletions examples/llava/README-granitevision.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
# Granite Vision

Download the model and point your `GRANITE_MODEL` environment variable to the path.

```bash
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview
$ export GRANITE_MODEL=./granite-vision-3.1-2b-preview
```


### 1. Running llava surgery v2.
First, we need to run the llava surgery script as shown below:

`python llava_surgery_v2.py -C -m $GRANITE_MODEL`

You should see two new files (`llava.clip` and `llava.projector`) written into your model's directory, as shown below.

```bash
$ ls $GRANITE_MODEL | grep -i llava
llava.clip
llava.projector
```

We should see that the projector and visual encoder get split out into the llava files. Quick check to make sure they aren't empty:
```python
import os
import torch

MODEL_PATH = os.getenv("GRANITE_MODEL")
if not MODEL_PATH:
raise ValueError("env var GRANITE_MODEL is unset!")

encoder_tensors = torch.load(os.path.join(MODEL_PATH, "llava.clip"))
projector_tensors = torch.load(os.path.join(MODEL_PATH, "llava.projector"))

assert len(encoder_tensors) > 0
assert len(projector_tensors) > 0
```

If you actually inspect the `.keys()` of the loaded tensors, you should see a lot of `vision_model` tensors in the `encoder_tensors`, and 5 tensors (`'multi_modal_projector.linear_1.bias'`, `'multi_modal_projector.linear_1.weight'`, `'multi_modal_projector.linear_2.bias'`, `'multi_modal_projector.linear_2.weight'`, `'image_newline'`) in the multimodal `projector_tensors`.


### 2. Creating the Visual Component GGUF
To create the GGUF for the visual components, we need to write a config for the visual encoder; make sure the config contains the correct `image_grid_pinpoints`


Note: we refer to this file as `$VISION_CONFIG` later on.
```json
{
"_name_or_path": "siglip-model",
"architectures": [
"SiglipVisionModel"
],
"image_grid_pinpoints": [
[384,768],
[384,1152],
[384,1536],
[384,1920],
[384,2304],
[384,2688],
[384,3072],
[384,3456],
[384,3840],
[768,384],
[768,768],
[768,1152],
[768,1536],
[768,1920],
[1152,384],
[1152,768],
[1152,1152],
[1536,384],
[1536,768],
[1920,384],
[1920,768],
[2304,384],
[2688,384],
[3072,384],
[3456,384],
[3840,384]
],
"mm_patch_merge_type": "spatial_unpad",
"hidden_size": 1152,
"image_size": 384,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
"layer_norm_eps": 1e-6,
"hidden_act": "gelu_pytorch_tanh",
"projection_dim": 0,
"vision_feature_layer": [-24, -20, -12, -1]
}
```

Create a new directory to hold the visual components, and copy the llava.clip/projector files, as well as the vision config into it.

```bash
$ ENCODER_PATH=$PWD/visual_encoder
$ mkdir $ENCODER_PATH

$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
$ cp $VISION_CONFIG $ENCODER_PATH/config.json
```

At which point you should have something like this:
```bash
$ ls $ENCODER_PATH
config.json llava.projector pytorch_model.bin
```

Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the siglip visual encoder - in the transformers model, you can find these numbers in the [preprocessor_config.json](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview/blob/main/preprocessor_config.json).
```bash
$ python convert_image_encoder_to_gguf.py \
-m $ENCODER_PATH \
--llava-projector $ENCODER_PATH/llava.projector \
--output-dir $ENCODER_PATH \
--clip-model-is-vision \
--clip-model-is-siglip \
--image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5
```

this will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the abs path of this file as the `$VISUAL_GGUF_PATH.`


### 3. Creating the LLM GGUF.
The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path.

First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to.
```
$ export LLM_EXPORT_PATH=$PWD/granite_vision_llm
```

```python
import os
import transformers

MODEL_PATH = os.getenv("GRANITE_MODEL")
if not MODEL_PATH:
raise ValueError("env var GRANITE_MODEL is unset!")

LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH")
if not MODEL_PATH:
raise ValueError("env var LLM_EXPORT_PATH is unset!")

tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH)

# NOTE: granite vision support was added to transformers very recently (4.49);
# if you get size mismatches, your version is too old.
# If you are running with an older version, set `ignore_mismatched_sizes=True`
# as shown below; it won't be loaded correctly, but the LLM part of the model that
# we are exporting will be loaded correctly.
model = transformers.AutoModelForImageTextToText.from_pretrained(MODEL_PATH, ignore_mismatched_sizes=True)

tokenizer.save_pretrained(LLM_EXPORT_PATH)
model.language_model.save_pretrained(LLM_EXPORT_PATH)
```

Now you can convert the exported LLM to GGUF with the normal converter in the root of the llama cpp project.
```bash
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm.gguf
...
$ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH
```


### 4. Running the Model in Llama cpp
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. Sample usage:

Note - the test image shown below can be found [here](https://github-production-user-asset-6210df.s3.amazonaws.com/10740300/415512792-d90d5562-8844-4f34-a0a5-77f62d5a58b5.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20250221%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250221T054145Z&X-Amz-Expires=300&X-Amz-Signature=86c60be490aa49ef7d53f25d6c973580a8273904fed11ed2453d0a38240ee40a&X-Amz-SignedHeaders=host).

```bash
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
--mmproj $VISUAL_GGUF_PATH \
--image cherry_blossom.jpg \
-c 16384 \
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat type of flowers are in this picture?\n<|assistant|>\n" \
--temp 0
```

Sample response: `The flowers in the picture are cherry blossoms, which are known for their delicate pink petals and are often associated with the beauty of spring.`