Skip to content

Adjust mul_mat_f16 work memory #1226

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,15 @@ endif
#

# keep standard at C11 and C++11
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
CFLAGS = -I. -O3 -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
LDFLAGS =

ifndef LLAMA_DEBUG
CFLAGS += -DNDEBUG
CXXFLAGS += -DNDEBUG
endif

# warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
Expand Down
21 changes: 15 additions & 6 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -8245,8 +8245,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#else
float * const wdata = params->wdata;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
Expand All @@ -8263,15 +8261,20 @@ static void ggml_compute_forward_mul_mat_f16_f32(
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
}
}

assert(id*sizeof(ggml_fp16_t) <= params->wsize);
}
#else
float * const wdata = params->wdata;
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
for (int64_t i00 = 0; i00 < ne00; ++i00) {
wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
}
}

assert(id*sizeof(float) <= params->wsize);
}
#endif

Expand Down Expand Up @@ -8537,7 +8540,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
id += ne00;
}

assert(id*sizeof(float) <= params->wsize);
}

const float * x = wdata;
#endif

Expand Down Expand Up @@ -11571,10 +11577,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0));
//printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
//printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
//printf("cur = %zu\n", cur);
#if defined(GGML_USE_CUBLAS)
// with cuBLAS, we need memory for the full 3D / 4D data of src1
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
#else
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
#endif
} else {
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
}
Expand Down
2 changes: 1 addition & 1 deletion llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -780,7 +780,7 @@ static bool kv_cache_init(
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;

const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;

cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
Expand Down