Skip to content

[CANN]Support Opt CONV_TRANSPOSE_1D and ELU #12786

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Apr 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .devops/llama-cli-cann.Dockerfile
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10

FROM ascendai/cann:$ASCEND_VERSION AS build

WORKDIR /app

COPY . .

RUN yum install -y gcc g++ cmake make
RUN yum install -y gcc g++ cmake make libcurl-devel
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -1771,7 +1771,7 @@ jobs:
strategy:
matrix:
cann:
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
Expand All @@ -1784,7 +1784,7 @@ jobs:
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake
yum install -y git gcc gcc-c++ make cmake libcurl-devel

- name: Build
run: |
Expand Down
62 changes: 62 additions & 0 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,8 @@
#include <aclnnop/aclnn_sub.h>
#include <aclnnop/aclnn_mul.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_convolution.h>
#include <aclnnop/aclnn_elu.h>
#include <float.h>

#include <cmath>
Expand Down Expand Up @@ -86,6 +88,20 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclT
}
}

void ggml_cann_unary_op(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];

aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);

unary_op(ctx, acl_src, acl_dst);

ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}

/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
Expand Down Expand Up @@ -2585,3 +2601,49 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}

void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];

// stride
int64_t s0 = ((const int32_t*)(dst->op_params))[0];

aclTensor* acl_input = ggml_cann_create_tensor(src1, src1->ne, src1->nb, 3, ACL_FORMAT_NCL);
aclTensor* acl_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3, ACL_FORMAT_NCL);
aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3, ACL_FORMAT_NCL);

int64_t strideVal[1];
strideVal[0] = s0;
aclIntArray *stride = aclCreateIntArray(strideVal, 1);
int64_t paddingVal[] = {0};
aclIntArray *padding = aclCreateIntArray(paddingVal, 1);
int64_t dilationVal[] = {1};
aclIntArray *dilation = aclCreateIntArray(dilationVal, 1);
bool transposed = true;
int64_t groups = 1;
int8_t cubeMathType = 0;

GGML_CANN_CALL_ACLNN_OP(Convolution, acl_input, acl_weight, nullptr, stride,
padding, dilation, transposed, padding, groups, acl_dst, cubeMathType);

ACL_CHECK(aclDestroyTensor(acl_weight));
ACL_CHECK(aclDestroyTensor(acl_dst));
}

void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];

aclTensor* acl_input = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);

float alphaValue = 1.0f;
aclScalar* alpha = nullptr;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);

GGML_CANN_CALL_ACLNN_OP(Elu, acl_input, alpha, alpha, alpha,
acl_dst);

ACL_CHECK(aclDestroyTensor(acl_input));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
167 changes: 111 additions & 56 deletions ggml/src/ggml-cann/aclnn_ops.h
Original file line number Diff line number Diff line change
@@ -1,15 +1,4 @@
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS

/**
* @file acl_tensor
* @brief This file contains related functions of ggml_tensor and acl_tensor.
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
* functions.
* @author hipudding <[email protected]>
* @author wangshuai09 <[email protected]>
* @date July 15, 2024
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
Expand All @@ -31,6 +20,9 @@
* IN THE SOFTWARE.
*/

#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS

#include <aclnnop/aclnn_abs.h>
#include <aclnnop/aclnn_neg.h>
#include <aclnnop/aclnn_exp.h>
Expand Down Expand Up @@ -483,8 +475,8 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* operation is executed using the CANN backend for optimized performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the indices of the maximum values will be stored.
* dst->op is `GGML_OP_ARGMAX`.
* @param dst The destination tensor where the indices of the maximum values will
* be stored. dst->op is `GGML_OP_ARGMAX`.
*/
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);

Expand Down Expand Up @@ -600,40 +592,8 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);

/**
* @brief Launches an asynchronous task using the memory allocator.
*
* This macro submit an asynchronous task on the specified stream.
* The task uses memory allocated by the allocator. It is guaranteed
* that the memory will not be accessed by other tasks until this task
* completes, due to the sequential execution order within the same stream.
*
* @param OP_NAME aclnn operator name.
* @param args Additional arguments required by the task.
*
* @note
* Memory from the allocator will be "freed" immediately and can be
* reallocated to other pointers. However, it won't be accessed by any
* other task before this asynchronous task ends, because all tasks in the
* same stream are executed in queue order.
*/
#define GGML_CANN_CALL_ACLNN_OP(OP_NAME, ...) \
do { \
uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \
\
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
\
if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \
} \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, ctx.stream())); \
} while (0)


/**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one output tensor.
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
* output tensor.
*
* This function checks whether broadcasting is needed between `src0` and `src1`.
* If broadcasting is required, it calculates the proper shapes and creates
Expand All @@ -647,14 +607,57 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
aclTensor ** acl_src1, aclTensor ** acl_dst);
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);

/**
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
* tensor using the CANN backend.
*
* @details This function performs a 1D transposed convolution (also known as
* deconvolution) operation on the input tensor. The computed result is stored
* in the destination tensor `dst`. The operation is optimized using the CANN
* backend for improved performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the transposed convolution result
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
*/
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Applies a element-wise operation to two input tensors using the CANN backend.
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
* using the CANN backend.
*
* @details This function performs an element-wise ELU activation on the input
* tensor.
* The result is written to the destination tensor `dst` in-place.
* The ELU function is defined as:
*
* \text{ELU}(x) =
* \begin{cases}
* x, & \text{if } x > 0 \\
* \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0
* \end{cases}
*
* This templated function takes a binary operator and applies it to two source tensors
* associated with the destination tensor. The function handles broadcasting as needed.
* where α (alpha) is a hyperparameter, typically set to 1.0.
* This operation is optimized using the CANN backend for high-performance
* inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the ELU-activated result will be stored.
* dst->op is expected to be `GGML_OP_ELU`.
*/
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Applies a element-wise operation to two input tensors using the CANN
* backend.
*
* This templated function takes a binary operator and applies it to two source
* tensors
* associated with the destination tensor. The function handles broadcasting as
* needed.
*
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
* the binary operation to be performed. It must take three arguments:
Expand All @@ -681,6 +684,38 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ACL_CHECK(aclDestroyTensor(acl_dst));
}

/**
* @brief Launches an asynchronous task using the memory allocator.
*
* This macro submit an asynchronous task on the specified stream.
* The task uses memory allocated by the allocator. It is guaranteed
* that the memory will not be accessed by other tasks until this task
* completes, due to the sequential execution order within the same stream.
*
* @param OP_NAME aclnn operator name.
* @param args Additional arguments required by the task.
*
* @note
* Memory from the allocator will be "freed" immediately and can be
* reallocated to other pointers. However, it won't be accessed by any
* other task before this asynchronous task ends, because all tasks in the
* same stream are executed in queue order.
*/
#define GGML_CANN_CALL_ACLNN_OP(OP_NAME, ...) \
do { \
uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \
\
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
\
if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \
} \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, ctx.stream())); \
} while (0)

/**
* @brief Applies a unary operation to an input tensor using the CANN backend.
*
Expand All @@ -690,7 +725,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @tparam unary_op A callable with the signature:
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
* where the first aclTensor is the source and the second is the destination.
*
* @param ctx The CANN backend context for managing resources and execution.
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
Expand All @@ -702,10 +736,30 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
aclTensor* acl_dst = ggml_cann_create_tensor(dst);

unary_op(ctx, acl_src, acl_dst);

ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}

/**
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
*
* @details This function performs a unary operation on the input tensor using
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
* context and two ACL tensors (source and destination). Internally, this function
* creates ACL representations of the ggml tensors and invokes the unary operation.
* The result is stored in the destination tensor `dst`. This utility abstracts the
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
*
* @param unary_op A callable that performs the unary operation using CANN APIs.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* The source tensor is retrieved from `dst->src[0]`.
*/
void ggml_cann_unary_op(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
*
Expand All @@ -725,11 +779,12 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
*/
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
do { \
auto lambda = [](auto ctx, auto acl_src, auto acl_dst) { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_unary_op<lambda>(ctx, dst); \
ggml_cann_unary_op(lambda, ctx, dst); \
} \
while (0)

#endif // CANN_ACLNN_OPS
Loading
Loading