Skip to content

metal : add mean kernel #14267

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 28 additions & 5 deletions ggml/src/ggml-metal/ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -498,6 +498,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_MEAN,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
GGML_METAL_KERNEL_TYPE_ARGMAX,
Expand Down Expand Up @@ -1454,6 +1455,7 @@ @implementation GGMLMetalClass
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
Expand Down Expand Up @@ -1653,6 +1655,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_LOG:
return false; // TODO: implement
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
Expand Down Expand Up @@ -2400,11 +2403,30 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
{
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));

id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
id<MTLComputePipelineState> pipeline = nil;

switch (dst->op) {
case GGML_OP_SUM_ROWS:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
break;
case GGML_OP_MEAN:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
break;
default:
GGML_ABORT("fatal error");
}

int nth = 32; // SIMD width

while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
nth *= 2;
}

nth = MIN(nth, ne00);

ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
Expand Down Expand Up @@ -2434,11 +2456,12 @@ static bool ggml_metal_encode_node(
};

[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];

[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{
Expand Down
48 changes: 39 additions & 9 deletions ggml/src/ggml-metal/ggml-metal.metal
Original file line number Diff line number Diff line change
Expand Up @@ -993,31 +993,61 @@ kernel void kernel_neg(
dst[tpig] = -src0[tpig];
}

template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
constant ggml_metal_kargs_sum_rows & args,
uint3 tpig[[thread_position_in_grid]]) {
int64_t i3 = tpig.z;
int64_t i2 = tpig.y;
int64_t i1 = tpig.x;
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
int64_t i3 = tgpig.z;
int64_t i2 = tgpig.y;
int64_t i1 = tgpig.x;

if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}

if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}

device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);

float row_sum = 0;
float sumf = 0;

for (int64_t i0 = 0; i0 < args.ne00; i0++) {
row_sum += src_row[i0];
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
sumf += src_row[i0];
}

dst_row[0] = row_sum;
sumf = simd_sum(sumf);

threadgroup_barrier(mem_flags::mem_threadgroup);

if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}

threadgroup_barrier(mem_flags::mem_threadgroup);

sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);

if (tpitg.x == 0) {
dst_row[0] = norm ? sumf / args.ne00 : sumf;
}
}

typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;

template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;

template<typename T>
kernel void kernel_soft_max(
device const char * src0,
Expand Down
Loading