Skip to content

Some improvements to loading the session with --prompt-cache #1550

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/main/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,7 @@ These options help improve the performance and memory usage of the LLaMA models.

### Prompt Caching

- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs.
- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation.

### Quantization

Expand Down
18 changes: 14 additions & 4 deletions examples/main/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -134,8 +134,6 @@ int main(int argc, char ** argv) {
return 0;
}

// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');

std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
Expand All @@ -155,6 +153,7 @@ int main(int argc, char ** argv) {
return 1;
}
session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params.seed);

fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
} else {
Expand All @@ -163,7 +162,16 @@ int main(int argc, char ** argv) {
}

// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
std::vector<llama_token> embd_inp;

if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');

embd_inp = ::llama_tokenize(ctx, params.prompt, true);
} else {
embd_inp = session_tokens;
}

const int n_ctx = llama_n_ctx(ctx);

Expand All @@ -181,7 +189,9 @@ int main(int argc, char ** argv) {
}
n_matching_session_tokens++;
}
if (n_matching_session_tokens >= embd_inp.size()) {
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
Expand Down