-
Notifications
You must be signed in to change notification settings - Fork 12.2k
Add AWQ (Activation-aware Weight Quantization) for llama, llama2, mpt, and mistral models #4593
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
34 commits
Select commit
Hold shift + click to select a range
2ea3934
update: awq support llama-7b model
8a3cece
update: change order
0adf4c7
update: benchmark results for llama2-7b
e851199
update: mistral 7b v1 benchmark
eb9a790
update: support 4 models
576d28b
fix: Readme
4cad8d7
update: ready for PR
f97c587
update: readme
ef61a66
fix: readme
f8cf783
update: change order import
1b300cb
black
8fece75
format code
8177ad4
update: work for bot mpt and awqmpt
d2e9d00
update: readme
0610672
Rename to llm_build_ffn_mpt_awq
c02f6df
Formatted other files
71c0a27
Fixed params count
741b7fb
Merge branch 'github' of https://gitlab.vinai.io/mlbooster/llama.cpp …
e04b8f0
fix: remove code
48cd819
update: more detail for mpt
6fcdb07
fix: readme
b00e2d9
fix: readme
440cc2f
update: change folder architecture
00f48ad
fix: common.cpp
9b742c5
fix: readme
e8fae2d
Merge branch 'master' of https://github.com/ggerganov/llama.cpp into …
a600c61
fix: remove ggml_repeat
namtranase 2187a8d
update: cicd
namtranase e9ad5fe
update: cicd
namtranase 13f60c4
uppdate: remove use_awq arg
namtranase 44f4ce2
Merge branch 'master' of https://github.com/namtranase/llama.cpp
namtranase d089842
update: readme
namtranase 278f3e9
Merge branch 'master' into HEAD
ggerganov 9174699
llama : adapt plamo to new ffn
ggerganov File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp | ||
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)] | ||
|
||
**Supported models:** | ||
|
||
- [X] LLaMA | ||
- [x] LLaMA 2 | ||
- [X] MPT | ||
- [X] Mistral AI v0.1 | ||
- [ ] Bloom | ||
- [ ] Mixtral MoE | ||
|
||
**TODO:** | ||
- [x] Update version work with both MPT and MPT-AWQ model | ||
- [ ] Add OPT model | ||
- [ ] Add Bloom model | ||
- [ ] Add Mixtral MoE | ||
- [ ] Support w3, w2 | ||
|
||
|
||
## Contents | ||
|
||
- [Install](##Install) | ||
- [Convert](##Convert) | ||
- [Quantize](##Quantize) | ||
- [Test](##Test) | ||
- [Benchmark](##Benchmark) | ||
- [Results](##Results) | ||
|
||
## Install | ||
Install requirements | ||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT | ||
```bash | ||
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache | ||
``` | ||
|
||
## Convert | ||
Example for llama model | ||
```bash | ||
# For llama7b and llama2 models | ||
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf | ||
# For mistral and mpt models | ||
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf | ||
``` | ||
|
||
## Quantize | ||
```bash | ||
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types. | ||
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0 | ||
``` | ||
|
||
## Test | ||
```bash | ||
# For all models. | ||
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time" | ||
``` | ||
|
||
## Benchmark | ||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. | ||
```bash | ||
# For llama and llama2, and mistral models. | ||
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw | ||
``` | ||
|
||
## Results | ||
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison | ||
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k | ||
|
||
### Llama 7B (Build with OpenBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|-----------:|--------------|-------:|-------:|-------:|-------:| | ||
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 | | ||
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 | | ||
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
|
||
### Llama2 7B (Build with CuBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|------------:|--------------|-------:|-------:|-------:|-------:| | ||
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 | | ||
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 | | ||
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
|
||
### Mistral 7B v0.1 (Build with CuBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|-------------:|--------------|-------:|-------:|-------:|-------:| | ||
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 | | ||
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G | | ||
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 | | ||
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G | | ||
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
### MPT 7B (Build with OpenBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|---------:|--------------|-------:|-------:|-------:|--------:| | ||
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 | | ||
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G | | ||
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873| | ||
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G | | ||
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
""" | ||
Implements the AWQ for llama.cpp use cases. | ||
Original paper: https://arxiv.org/abs/2306.00978 | ||
|
||
This code is based on versions of the AWQ implementation found in the following repositories: | ||
* https://github.com/mit-han-lab/llm-awq | ||
* https://github.com/casper-hansen/AutoAWQ | ||
""" | ||
|
||
import os | ||
import torch | ||
import torch.nn as nn | ||
|
||
from transformers import AutoModelForCausalLM, AutoConfig | ||
from transformers.models.bloom.modeling_bloom import BloomGelu | ||
from transformers.models.llama.modeling_llama import LlamaRMSNorm | ||
from transformers.activations import GELUActivation | ||
|
||
|
||
class ScaledActivation(nn.Module): | ||
""" | ||
ScaledActivation module wraps an existing activation function and applies a | ||
scale factor to its output. | ||
|
||
Args: | ||
module (nn.Module): The activation function to be scaled. | ||
scales (torch.Tensor): A tensor of size (num_features,) containing the initial | ||
scale factors for each feature. | ||
|
||
Returns: | ||
torch.Tensor: The scaled output of the activation function. | ||
""" | ||
|
||
def __init__(self, module, scales): | ||
super().__init__() | ||
self.act = module | ||
self.scales = nn.Parameter(scales.data) | ||
|
||
def forward(self, x): | ||
return self.act(x) / self.scales.view(1, 1, -1).to(x.device) | ||
|
||
|
||
def set_op_by_name(layer, name, new_module): | ||
""" | ||
Set the new module for given module's name. | ||
|
||
Args: | ||
layer (nn.Module): The layer in which to replace the submodule. | ||
name (str): The path to the submodule to be replaced, using dot notation | ||
to access nested modules. | ||
new_module (nn.Module): The new module to replace the existing one. | ||
""" | ||
levels = name.split(".") | ||
if len(levels) > 1: | ||
mod_ = layer | ||
for l_idx in range(len(levels) - 1): | ||
if levels[l_idx].isdigit(): | ||
mod_ = mod_[int(levels[l_idx])] | ||
else: | ||
mod_ = getattr(mod_, levels[l_idx]) | ||
setattr(mod_, levels[-1], new_module) | ||
else: | ||
setattr(layer, name, new_module) | ||
|
||
|
||
def get_op_by_name(module, op_name): | ||
""" | ||
Retrieves a submodule within a given layer based on its name. | ||
|
||
Args: | ||
module (nn.Module): The layer containing the submodule to find. | ||
op_name (str): The name of the submodule. | ||
|
||
Returns: | ||
nn.Module: The requested submodule found within the given layer. | ||
|
||
Raises: | ||
ValueError: If the specified submodule cannot be found within the layer. | ||
""" | ||
for name, m in module.named_modules(): | ||
if name == op_name: | ||
return m | ||
raise ValueError(f"Cannot find op {op_name} in module {module}") | ||
|
||
|
||
@torch.no_grad() | ||
def scale_ln_fcs(ln, fcs, scales): | ||
""" | ||
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally. | ||
|
||
Args: | ||
ln (nn.LayerNorm): The LayerNorm module to be scaled. | ||
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
""" | ||
|
||
if not isinstance(fcs, list): | ||
fcs = [fcs] | ||
|
||
scales = scales.to(ln.weight.device) | ||
|
||
ln.weight.div_(scales) | ||
if hasattr(ln, "bias") and ln.bias is not None: | ||
ln.bias.div_(scales) | ||
|
||
for fc in fcs: | ||
fc.weight.mul_(scales.view(1, -1)) | ||
|
||
for p in ln.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
for fc in fcs: | ||
for p in fc.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
@torch.no_grad() | ||
def scale_fc_fc(fc1, fc2, scales): | ||
""" | ||
Scales the weights of two fully-connected layers in a specific pattern. | ||
|
||
Args: | ||
fc1 (nn.Linear): The first fully-connected layer to be scaled. | ||
fc2 (nn.Linear): The second fully-connected layer to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
""" | ||
assert isinstance(fc1, nn.Linear) | ||
assert isinstance(fc2, nn.Linear) | ||
|
||
scales = scales.to(fc1.weight.device) | ||
|
||
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1)) | ||
if fc1.bias is not None: | ||
fc1.bias.div_(scales.view(-1)) | ||
|
||
fc2.weight.mul_(scales.view(1, -1)) | ||
|
||
for p in fc1.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
for p in fc2.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
@torch.no_grad() | ||
def scale_gelu_fc(gelu, fc, scales): | ||
""" | ||
Scales the weight of a GELU activation and a fully-connected layer proportionally. | ||
|
||
Args: | ||
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled. | ||
fc (nn.Linear): The fully-connected layer to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
|
||
Raises: | ||
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`. | ||
TypeError: If the `fc` module is not of type `nn.Linear`. | ||
""" | ||
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation)) | ||
assert isinstance(fc, nn.Linear) | ||
|
||
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device)) | ||
|
||
for p in fc.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
def apply_scale(module, scales_list, input_feat_dict=None): | ||
""" | ||
Applies different scaling strategies to layers based on their type and hierarchy within a given module. | ||
|
||
Args: | ||
module (nn.Module): The module containing the layers to be scaled. | ||
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing: | ||
* prev_op_name (str): The name of the preceding operation or module, | ||
relative to which the layers to be scaled are located. | ||
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation. | ||
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature. | ||
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding | ||
input features (optional). | ||
""" | ||
for prev_op_name, layer_names, scales in scales_list: | ||
prev_op = get_op_by_name(module, prev_op_name) | ||
layers = [get_op_by_name(module, name) for name in layer_names] | ||
|
||
prev_op.cuda() | ||
for layer in layers: | ||
layer.cuda() | ||
scales.cuda() | ||
|
||
if isinstance(prev_op, nn.Linear): | ||
assert len(layers) == 1 | ||
scale_fc_fc(prev_op, layers[0], scales) | ||
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower(): | ||
scale_ln_fcs(prev_op, layers, scales) | ||
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)): | ||
new_module = ScaledActivation(prev_op, scales) | ||
set_op_by_name(module, prev_op_name, new_module) | ||
scale_gelu_fc(prev_op, layers[0], scales) | ||
else: | ||
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!") | ||
|
||
# apply the scaling to input feat if given; prepare it for clipping | ||
if input_feat_dict is not None: | ||
for layer_name in layer_names: | ||
inp = input_feat_dict[layer_name] | ||
inp.div_(scales.view(1, -1).to(inp.device)) | ||
|
||
prev_op.cpu() | ||
for layer in layers: | ||
layer.cpu() | ||
scales.cpu() | ||
|
||
|
||
@torch.no_grad() | ||
def apply_clip(module, clip_list): | ||
""" | ||
Applies element-wise clipping to the weight of a specific layer within a given module. | ||
|
||
Args: | ||
module (nn.Module): The module containing the layer to be clipped. | ||
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing: | ||
* name (str): The name of the layer to be clipped, relative to the root of the module. | ||
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight. | ||
""" | ||
for name, max_val in clip_list: | ||
layer = get_op_by_name(module, name) | ||
layer.cuda() | ||
max_val = max_val.to(layer.weight.device) | ||
org_shape = layer.weight.shape | ||
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1) | ||
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val) | ||
layer.weight.data = layer.weight.data.reshape(org_shape) | ||
layer.cpu() | ||
|
||
|
||
def add_scale_weights(model_path, scale_path, tmp_path): | ||
""" | ||
Adds pre-computed Activation Weight Quantization (AWQ) results to a model, | ||
including scaling factors and clipping bounds. | ||
|
||
Args: | ||
model_path (str): Path to the pre-trained model to be equipped with AWQ. | ||
scale_path (str): Path to the AWQ scale factors (.pt file). | ||
tmp_path (str): Path to the temporary directory where the equipped model will be saved. | ||
""" | ||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, config=config, trust_remote_code=True | ||
) | ||
model.eval() | ||
awq_results = torch.load(str(scale_path), map_location="cpu") | ||
apply_scale(model, awq_results["scale"]) | ||
apply_clip(model, awq_results["clip"]) | ||
model.save_pretrained(str(tmp_path)) | ||
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
torch>=2.0.0 | ||
transformers>=4.32.0 |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.