Skip to content

BERT tokenizer fixes #6498

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Apr 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2141,23 +2141,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_bos,
bool special) {
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
bool add_special,
bool parse_special) {
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
}

std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_bos,
bool special) {
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
Expand Down
8 changes: 4 additions & 4 deletions common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -221,14 +221,14 @@ void llama_batch_add(
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_bos,
bool special = false);
bool add_special,
bool parse_special = false);

std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_bos,
bool special = false);
bool add_special,
bool parse_special = false);

// tokenizes a token into a piece
// should work similar to Python's `tokenizer.id_to_piece`
Expand Down
53 changes: 19 additions & 34 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,15 +227,14 @@ def _get_part_names(self):
return ("pytorch_model.bin",)
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))

def _set_vocab_gpt2(self):
dir_model = self.dir_model
hparams = self.hparams
# used for GPT-2 BPE and WordPiece vocabs
def get_basic_vocab(self) -> tuple[list[str], list[int]]:
tokens: list[str] = []
toktypes: list[int] = []

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size

reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
Expand All @@ -255,11 +254,15 @@ def _set_vocab_gpt2(self):
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)

return tokens, toktypes

def _set_vocab_gpt2(self) -> None:
tokens, toktypes = self.get_basic_vocab()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)

special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_vocab.add_to_gguf(self.gguf_writer)

def _set_vocab_qwen(self):
Expand Down Expand Up @@ -2043,34 +2046,25 @@ def set_gguf_parameters(self):
self.gguf_writer.add_pooling_type(pooling_type)

def set_vocab(self):
# use huggingface vocab to get all tokens
vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
tokens, scores, toktypes = zip(*vocab.all_tokens())
assert len(tokens) == vocab.vocab_size
self.vocab_size = vocab.vocab_size
tokens, toktypes = self.get_basic_vocab()
self.vocab_size = len(tokens)

# we need this to validate the size of the token_type embeddings
# though currently we are passing all zeros to the token_type embeddings
n_token_types = len(set(toktypes))
self.gguf_writer.add_token_type_count(n_token_types)
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"

# convert to phantom space vocab
def phantom(tok, typ):
if tok.startswith(b"[") and tok.endswith(b"]"):
def phantom(tok):
if tok.startswith("[") and tok.endswith("]"):
return tok
if tok.startswith(b"##"):
if tok.startswith("##"):
return tok[2:]
return b"\xe2\x96\x81" + tok
tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))

# set up bos and eos tokens (cls and sep)
self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
return "\u2581" + tok
tokens = list(map(phantom, tokens))

# add vocab to gguf
self.gguf_writer.add_tokenizer_model("bert")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)

# handle special tokens
Expand Down Expand Up @@ -2142,16 +2136,6 @@ def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])

def get_tensors(self):
assert self.vocab_size is not None
for name, data in super().get_tensors():
# Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
data = data[:self.vocab_size, :]
yield name, data


@Model.register("GemmaForCausalLM")
class GemmaModel(Model):
Expand Down Expand Up @@ -2327,7 +2311,8 @@ def write_tensors(self):
data = data.astype(np.float32)

# if f16 desired, convert big float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
data = data.astype(np.float16)

print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
Expand Down
2 changes: 2 additions & 0 deletions convert-persimmon-to-gguf.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
#!/usr/bin/env python3
from __future__ import annotations

import argparse
import os
import sys
Expand Down
21 changes: 10 additions & 11 deletions convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
import gguf

if TYPE_CHECKING:
from typing import TypeAlias
from typing_extensions import Self, TypeAlias

if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
Expand Down Expand Up @@ -516,17 +516,15 @@ class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"

def __init__(self, base_path: Path, ignore_nonllama: bool = False):
def __init__(self, base_path: Path):
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)

# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if ignore_nonllama:
pass # workaround incorrect use of this class for WordPiece
elif (
if (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
Expand Down Expand Up @@ -646,16 +644,17 @@ def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:


class Tensor(ABC):
ndarray: NDArray
data_type: DataType

@abstractmethod
def astype(self, data_type: DataType) -> Tensor: ...
def astype(self, data_type: DataType) -> Self: ...
@abstractmethod
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
def permute(self, n_head: int, n_head_kv: int) -> Self: ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
@abstractmethod
def part(self, n_part: int) -> UnquantizedTensor: ...
def part(self, n_part: int) -> Self: ...
@abstractmethod
def to_ggml(self) -> GGMLCompatibleTensor: ...

Expand All @@ -672,13 +671,13 @@ def __init__(self, ndarray: NDArray):
self.ndarray = ndarray
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]

def astype(self, data_type: DataType) -> Tensor:
def astype(self, data_type: DataType) -> UnquantizedTensor:
dtype = data_type.dtype
if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))

def to_ggml(self) -> UnquantizedTensor:
def to_ggml(self) -> Self:
return self

def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
Expand Down
6 changes: 3 additions & 3 deletions examples/embedding/embedding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -123,10 +123,10 @@ int main(int argc, char ** argv) {
inputs.push_back(inp);
}

// add eos if not present
// add SEP if not present
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_eos(model)) {
inp.push_back(llama_token_eos(model));
if (inp.empty() || inp.back() != llama_token_sep(model)) {
inp.push_back(llama_token_sep(model));
}
}

Expand Down
3 changes: 2 additions & 1 deletion examples/imatrix/imatrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -349,12 +349,13 @@ static void process_logits(
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {

const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
const int n_ctx = llama_n_ctx(ctx);

auto tim1 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);

std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);

auto tim2 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
Expand Down
5 changes: 3 additions & 2 deletions examples/infill/infill.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,7 @@ int main(int argc, char ** argv) {
LOG_TEE("%s\n", get_system_info(params).c_str());
}
const bool add_bos = llama_should_add_bos_token(model);
GGML_ASSERT(llama_add_eos_token(model) != 1);
LOG("add_bos: %d\n", add_bos);

bool suff_rm_leading_spc = params.escape;
Expand Down Expand Up @@ -279,10 +280,10 @@ int main(int argc, char ** argv) {
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));

guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());

std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());

original_prompt_len = original_inp.size();
Expand Down
3 changes: 1 addition & 2 deletions examples/llava/llava-cli.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,6 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
int n_past = 0;

const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));

std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<image>");
Expand Down Expand Up @@ -180,7 +179,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
}
}

eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, add_bos);
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);

Expand Down
5 changes: 1 addition & 4 deletions examples/lookahead/lookahead.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -64,13 +64,10 @@ int main(int argc, char ** argv) {
std::tie(model, ctx) = llama_init_from_gpt_params(params);

// Tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);

std::vector<llama_token> inp;
std::vector<llama_token> all;

inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
inp = ::llama_tokenize(ctx, params.prompt, true, true);
all = inp;

const int max_context_size = llama_n_ctx(ctx);
Expand Down
4 changes: 1 addition & 3 deletions examples/lookup/lookup-create.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,8 @@ int main(int argc, char ** argv){
GGML_ASSERT(model != nullptr);

// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);

std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
inp = ::llama_tokenize(ctx, params.prompt, true, true);
fprintf(stderr, "%s: tokenization done\n", __func__);


Expand Down
5 changes: 1 addition & 4 deletions examples/lookup/lookup-stats.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,8 @@ int main(int argc, char ** argv){
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));

// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);

std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
inp = ::llama_tokenize(ctx, params.prompt, true, true);

llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
Expand Down
5 changes: 1 addition & 4 deletions examples/lookup/lookup.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -42,11 +42,8 @@ int main(int argc, char ** argv){
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));

// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);

std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
inp = ::llama_tokenize(ctx, params.prompt, true, true);

llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
Expand Down
13 changes: 7 additions & 6 deletions examples/main/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,7 @@ int main(int argc, char ** argv) {
}

const bool add_bos = llama_should_add_bos_token(model);
GGML_ASSERT(llama_add_eos_token(model) != 1);
LOG("add_bos: %d\n", add_bos);

std::vector<llama_token> embd_inp;
Expand All @@ -255,7 +256,7 @@ int main(int argc, char ** argv) {
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
}
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
} else {
LOG("use session tokens\n");
embd_inp = session_tokens;
Expand All @@ -277,10 +278,10 @@ int main(int argc, char ** argv) {
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));

guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());

std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());

original_prompt_len = original_inp.size();
Expand Down Expand Up @@ -339,14 +340,14 @@ int main(int argc, char ** argv) {
}

// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);

LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());

// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);

LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
Expand Down
Loading