Skip to content

sampling : avoid expensive softmax during greedy sampling #9605

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion common/sampling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,15 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
GGML_ASSERT(false && "unknown mirostat version");
}
} else {
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
if (params.n_probs > 0) {
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
//
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
// it is much faster, since we avoid sorting all tokens and should give a good approximation
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
}

Expand Down
5 changes: 4 additions & 1 deletion examples/speculative/speculative.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,9 @@ struct seq_draft {
int main(int argc, char ** argv) {
gpt_params params;

// needed to get candidate probs even for temp <= 0.0
params.sparams.n_probs = 128;

if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
return 1;
}
Expand All @@ -49,7 +52,7 @@ int main(int argc, char ** argv) {
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;

std::default_random_engine rng(params.sparams.seed);
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
std::uniform_real_distribution<> u_dist;

// init llama.cpp
Expand Down
1 change: 1 addition & 0 deletions include/llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -1066,6 +1066,7 @@ extern "C" {
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);

/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);

/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
Expand Down
7 changes: 4 additions & 3 deletions src/llama-sampling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,14 @@
#include "llama-vocab.h"
#include "llama-grammar.h"

#include <cassert>
#include <algorithm>
#include <cstring>
#include <ctime>
#include <cassert>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <numeric>
#include <random>
#include <unordered_map>
Expand Down
42 changes: 41 additions & 1 deletion tests/test-sampling.cpp
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
#include "ggml.h"
#include "llama.h"
#include "llama-sampling.h"

#ifdef NDEBUG
#undef NDEBUG
Expand Down Expand Up @@ -249,6 +248,45 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
}

static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
std::vector<llama_token_data> cur(data.size());
std::copy(data.begin(), data.end(), cur.begin());
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
llama_sampler_apply(cnstr, &cur_p);
llama_sampler_reset(cnstr);
const int64_t t_start = ggml_time_us();
for (int i = 0; i < n_iter; i++) {
std::copy(data.begin(), data.end(), cur.begin());
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
llama_sampler_apply(cnstr, &cur_p);
llama_sampler_reset(cnstr);
}
const int64_t t_end = ggml_time_us();
llama_sampler_free(cnstr);
printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
}

#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))

static void test_perf() {
const int n_vocab = 1 << 17;

std::vector<llama_token_data> data;

data.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f);
data.emplace_back(llama_token_data{i, logit, 0.0f});
}

BENCH(llama_sampler_init_top_k (40), data, 32);
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
BENCH(llama_sampler_init_softmax (), data, 32);
}

int main(void) {
ggml_time_init();

Expand Down Expand Up @@ -316,5 +354,7 @@ int main(void) {

printf("OK\n");

test_perf();

return 0;
}