Skip to content
This repository was archived by the owner on Mar 28, 2023. It is now read-only.

[SYCL][Matrix] add a new joint matrix test that uses SYCL bfloat16 #1005

Merged
merged 3 commits into from
May 9, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
179 changes: 179 additions & 0 deletions SYCL/Matrix/joint_matrix_bfloat16.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
//==-------- joint_matrix_bfloat16.cpp - DPC++ joint_matrix----------- ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: matrix

// RUN: %clangxx -fsycl %s -o %t.out
// RUN: %CPU_RUN_PLACEHOLDER %t.out
// RUN: %GPU_RUN_PLACEHOLDER %t.out

#include <CL/sycl.hpp>
#include <iostream>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;
using bfloat16 = sycl::ext::oneapi::experimental::bfloat16;

#define SG_SZ 8

#define TM 8
#define TN 8
#define TK 16

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
private:
T *mat;

public:
T *get_data() { return mat; }
void set_data(T *data) { mat = data; }
big_matrix(T *data) : mat(data) {}
};

template <typename T1, typename T2, size_t M, size_t N, size_t K>
void matrix_multiply(big_matrix<T1, M, N> &C, big_matrix<T2, M, K> &A,
big_matrix<T2, K / 2, N * 2> &B) {
size_t NDRangeM = M / TM;
size_t NDRangeN = N / TN;
buffer<bfloat16, 2> bufA(A.get_data(), range<2>(M, K));
buffer<bfloat16, 2> bufB(B.get_data(), range<2>(K, N));
buffer<float, 2> bufC((float *)C.get_data(), range<2>(M, N));

queue q;
q.submit([&](handler &cgh) {
auto accC = bufC.get_access<access::mode::read_write>(cgh);
auto accA = bufA.get_access<access::mode::read_write>(cgh);
auto accB = bufB.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class imatrix>(
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}),
[=](nd_item<2> spmd_item) [[intel::reqd_sub_group_size(SG_SZ)]]

{
// The submatrix API has to be accessed by all the workitems in a
// subgroup these functions will be called once by the subgroup no
// code divergence between the workitems
const auto global_idx = spmd_item.get_global_id(0);
const auto global_idy = spmd_item.get_global_id(1);
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
const auto sg_starty = global_idy - spmd_item.get_local_id(1);

ext::oneapi::sub_group sg = spmd_item.get_sub_group();
joint_matrix<bfloat16, TM, TK> sub_a(sg);
// For B, since current implementation does not support non-packed
// layout, users need to specify the updated VNNI sizes along with
// the packed_b layout. By default, the layout is row_major and size
// is (TK, TN).
joint_matrix<bfloat16, TK, TN, matrix_layout::packed_b> sub_b(sg);
joint_matrix<float, TM, TN> sub_c(sg);

joint_matrix_load(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
for (int k = 0; k < K / TK; k += 1) { //
joint_matrix_load(
sg, sub_a, accA.get_pointer() + (sg_startx * TM) * K + k * TK,
K, matrix_layout::row_major);
// Assuming B data is already in VNNI format.
joint_matrix_load(sg, sub_b,
accB.get_pointer() + (k * TK / 2) * (N * 2) +
sg_starty / SG_SZ * TN * 2,
N * 2, matrix_layout::packed_b);
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
}
joint_matrix_store(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
}); // parallel for
}).wait();
}

static constexpr size_t MATRIX_M = TM * 2;
static constexpr size_t MATRIX_N = TN * 2;
static constexpr size_t MATRIX_K = TK * 2;
bfloat16 A[MATRIX_M][MATRIX_K];
bfloat16 B[MATRIX_K / 2][MATRIX_N * 2];
unsigned short Aref[MATRIX_M][MATRIX_K];
unsigned short Bref[MATRIX_K / 2][MATRIX_N * 2];
float C[MATRIX_M][MATRIX_N];
float D[MATRIX_M][MATRIX_N];

float make_fp32(short x) {
unsigned int y = x;
y = y << 16;
float *res = reinterpret_cast<float *>(&y);
return *res;
}

unsigned short make_bf16(float x) {
int *res = reinterpret_cast<int *>(&x);
*res = *res >> 16;
return (unsigned short)*res;
}

void matrix_multiply_ref(int *A_mem, int *B_mem, int *C_mem, int M, int N,
int K) {
// tiling
for (int m = 0; m < M; m++)
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
short *va = (short *)(A_mem + m * K + k);
short *vb = (short *)(B_mem + k * N + n);
float acc = *((float *)(C_mem + m * N + n));
// FIXME: Should we do reduce-add in another version?
for (int i = 0; i < 2; i++) {
acc += (make_fp32(va[i]) * make_fp32(vb[i]));
}
*((float *)(C_mem + m * N + n)) = acc;
}
}
}

int main() {
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_K; j++) {
// bfloat16 is created using unsigned short since conversion from float to
// bfloat16 is not supported on the host side yet
A[i][j] = bfloat16::from_bits(make_bf16(1.0f * (i + j)));
Aref[i][j] = make_bf16(1.0f * (i + j));
}
}
for (int i = 0; i < MATRIX_K / 2; i++) {
for (int j = 0; j < MATRIX_N * 2; j++) {
B[i][j] = bfloat16::from_bits((make_bf16(2.0f * i + 3.0f * j)));
Bref[i][j] = make_bf16(2.0f * i + 3.0f * j);
}
}
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
C[i][j] = 1.0;
D[i][j] = 1.0;
}
}

big_matrix<float, MATRIX_M, MATRIX_N> MC((float *)&C);
big_matrix<float, MATRIX_M, MATRIX_N> MD((float *)&D);
big_matrix<bfloat16, MATRIX_M, MATRIX_K> MA((bfloat16 *)&A);
big_matrix<bfloat16, MATRIX_K / 2, MATRIX_N * 2> MB((bfloat16 *)&B);
matrix_multiply(MC, MA, MB);
matrix_multiply_ref((int32_t *)Aref, (int32_t *)Bref, (int32_t *)D, MATRIX_M,
MATRIX_N, MATRIX_K / 2);

bool res = true;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
if (C[i][j] != D[i][j])
res = false;
}
}
if (res)
std::cout << "passed\n";
else
std::cout << "failed\n";
}