Skip to content
This repository was archived by the owner on Mar 28, 2023. It is now read-only.

[SYCL][CUDA] Adds cuda test for joint_matrix_apply. #1655

Merged
merged 5 commits into from
Mar 23, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions SYCL/Matrix/joint_matrix_apply_cuda.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
//==------------ joint_matrix_apply_cuda.cpp - DPC++ joint_matrix----------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: cuda
// RUN: %clangxx -fsycl -fsycl-targets=%sycl_triple -Xsycl-target-backend --cuda-gpu-arch=sm_80 %s -o %t.out
// RUN: %t.out

#include <sycl/sycl.hpp>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;
using sycl::ext::oneapi::bfloat16;

#define SG_SZ 32
constexpr size_t nWGperDim = 2;

template <typename T1, typename T2, size_t M, size_t K, size_t N>
class KernelName;

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
public:
T *mat;

T *get_data() { return mat; }
void set_data(T *data) { mat = data; }
big_matrix(T *data) : mat(data) {}
};

template <typename T, size_t M, size_t N>
void assert_ref(T *C, const float ref) {
for (size_t i = 0; i < M; i++)
for (size_t j = 0; j < N; j++) {
auto diff = C[i + j * M] - ref;
assert(std::fabs(static_cast<float>(diff)) <
std::numeric_limits<float>::epsilon());
}
}

template <typename T, typename T2, size_t M, size_t K, size_t N, typename F>
void matrix_verify_lambda(queue q,
big_matrix<T2, M * nWGperDim, N * nWGperDim> &C,
nd_range<2> &r, const float ref, F &&lambda) {
{
buffer<T2, 2> bufC(C.get_data(), range<2>(N * nWGperDim, M * nWGperDim));

q.submit([&](handler &cgh) {
accessor<T2, 2, access::mode::read_write, target::device> accC(bufC, cgh);

cgh.parallel_for<KernelName<T, T2, M, K, N>>(
r, [accC, lambda](
nd_item<2> spmd_item) [[sycl::reqd_sub_group_size(SG_SZ)]] {
const auto global_idx = spmd_item.get_global_id(0);
const auto global_idy = spmd_item.get_global_id(1);
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
const auto sg_starty = global_idy - spmd_item.get_local_id(1);

auto sg = spmd_item.get_sub_group();

joint_matrix<sub_group, T, use::a, M, K, layout::row_major> sub_a;
joint_matrix<sub_group, T, use::b, K, N, layout::row_major> sub_b;
joint_matrix<sub_group, T2, use::accumulator, M, N> sub_c;

joint_matrix_fill(sg, sub_a, 3);
joint_matrix_fill(sg, sub_b, 1);
joint_matrix_fill(sg, sub_c, -80);

joint_matrix_apply(sg, sub_a, lambda);

sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);

joint_matrix_store(sg, sub_c,
accC.get_pointer() +
(sg_startx * M) * (N * nWGperDim) +
sg_starty / SG_SZ * N,
(N * nWGperDim), layout::row_major);
}); // parallel for
});
}
assert_ref<T2, M * nWGperDim, N * nWGperDim>(C.get_data(), ref);
}

static constexpr size_t MATRIX_M = 16 * nWGperDim;
static constexpr size_t MATRIX_N = 16 * nWGperDim;

int main() {

float D[MATRIX_M][MATRIX_N];
big_matrix<float, MATRIX_M, MATRIX_N> MD_f((float *)&D);

queue q;
auto computeCapability =
std::stof(q.get_device().get_info<sycl::info::device::backend_version>());
nd_range<2> r({nWGperDim, nWGperDim * SG_SZ}, {1, 1 * SG_SZ});

auto apply_add = [](auto &x) { x = x + 2; };

if (computeCapability >= 7.0) {
matrix_verify_lambda<half, float, 16, 16, 16>(q, MD_f, r, 0.0, apply_add);
}

if (computeCapability >= 7.2) {
int32_t D_i[MATRIX_M][MATRIX_N];
big_matrix<int32_t, MATRIX_M, MATRIX_N> MD_i((int32_t *)&D_i);
matrix_verify_lambda<uint8_t, int32_t, 16, 16, 16>(q, MD_i, r, 0,
apply_add);
matrix_verify_lambda<int8_t, int32_t, 16, 16, 16>(q, MD_i, r, 0, apply_add);
}

if (computeCapability >= 8.0) {
matrix_verify_lambda<bfloat16, float, 16, 16, 16>(q, MD_f, r, 0.0,
apply_add);

double D_d[MATRIX_M / 2][MATRIX_N / 2];
big_matrix<double, 8 * nWGperDim, 8 * nWGperDim> MD_d((double *)&D_d);

matrix_verify_lambda<double, double, 8, 4, 8>(q, MD_d, r, -60.0, apply_add);
}

return 0;
}