This repository was archived by the owner on Mar 28, 2023. It is now read-only.
forked from llvm/llvm-test-suite
-
Notifications
You must be signed in to change notification settings - Fork 130
[SYCL][matrix] Add basic bf16 test case for the joint matrix feature #384
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
//==-------- joint_matrix_bf16.cpp - DPC++ joint_matrix--------------- ----==// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//===----------------------------------------------------------------------===// | ||
// REQUIRES: matrix | ||
|
||
// RUN: %clangxx -fsycl %s -o %t.out | ||
// RUN: %CPU_RUN_PLACEHOLDER %t.out | ||
// RUN: %GPU_RUN_PLACEHOLDER %t.out | ||
|
||
// XFAIL: * | ||
|
||
#include <CL/sycl.hpp> | ||
#include <iostream> | ||
|
||
using namespace sycl; | ||
using namespace sycl::ext::oneapi::experimental::matrix; | ||
|
||
#define SG_SZ 8 | ||
|
||
#define TM 8 | ||
#define TN SG_SIZE | ||
#define TK 16 | ||
|
||
template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix { | ||
public: | ||
T *mat; | ||
|
||
public: | ||
T *get_data() { return mat; } | ||
void set_data(T *data) { mat = data; } | ||
big_matrix(T *data) : mat(data) {} | ||
}; | ||
|
||
template <typename T1, typename T2, size_t NUM_ROWS_A, size_t NUM_COLS_A, | ||
size_t NUM_ROWS_B, size_t NUM_COLS_B, size_t NUM_ROWS_C, | ||
size_t NUM_COLS_C> | ||
void matrix_multiply(big_matrix<T1, NUM_ROWS_C, NUM_COLS_C> &C, | ||
big_matrix<T2, NUM_ROWS_A, NUM_COLS_A> &A, | ||
big_matrix<T2, NUM_ROWS_B, NUM_COLS_B> &B) { | ||
size_t M = NUM_ROWS_C; | ||
size_t N = NUM_COLS_C; | ||
size_t K = NUM_COLS_A; | ||
|
||
assert(NUM_ROWS_C == NUM_ROWS_A && NUM_COLS_A == NUM_ROWS_B * 2); | ||
size_t NDRangeM = M / TM; | ||
size_t NDRangeN = N / TN; | ||
buffer<unsigned short, 2> bufA(A.get_data(), range<2>(M, K)); | ||
buffer<unsigned short, 2> bufB(B.get_data(), range<2>(K / 2, N * 2)); | ||
buffer<float, 2> bufC((float *)C.get_data(), range<2>(M, N)); | ||
|
||
queue q; | ||
q.submit([&](handler &cgh) { | ||
auto accC = bufC.get_access<access::mode::read_write>(cgh); | ||
auto accA = bufA.get_access<access::mode::read_write>(cgh); | ||
auto accB = bufB.get_access<access::mode::read_write>(cgh); | ||
|
||
cgh.parallel_for<class imatrix>( | ||
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}), | ||
[ accA, accB, accC, M, N, K ](nd_item<2> spmd_item) | ||
[[intel::reqd_sub_group_size(SG_SZ)]] | ||
|
||
{ | ||
// The submatrix API has to be accessed by all the workitems in a | ||
// subgroup these functions will be called once by the subgroup no | ||
// code divergence between the workitems | ||
const auto global_idx = spmd_item.get_global_id(0); | ||
const auto global_idy = spmd_item.get_global_id(1); | ||
const auto sg_startx = global_idx - spmd_item.get_local_id(0); | ||
const auto sg_starty = global_idy - spmd_item.get_local_id(1); | ||
|
||
ONEAPI::sub_group sg = spmd_item.get_sub_group(); | ||
joint_matrix<ONEAPI::sub_group, unsigned short, TM, TK> sub_a(sg); | ||
// For B, since current implementation does not support non-packed | ||
// layout, users need to specify the updated VNNI sizes along with | ||
// the packed_b layout. By default, the layout is row_major and size | ||
// is (TK, TN). | ||
joint_matrix<ONEAPI::sub_group, unsigned short, TK, TN, | ||
matrix_layout::packed_b> | ||
sub_b(sg); | ||
joint_matrix<ONEAPI::sub_group, float, TM, TN> sub_c(sg); | ||
|
||
joint_matrix_load(sg, sub_c, | ||
accC.get_pointer() + (sg_startx * TM) * N + | ||
sg_starty / SG_SZ * TN, | ||
N, matrix_layout::row_major); | ||
for (int k = 0; k < K; k += TK) { | ||
joint_matrix_load(sg, sub_a, | ||
accA.get_pointer() + (sg_startx * TM) * K + k, K, | ||
matrix_layout::row_major); | ||
// Assume we alreay in vnni format. | ||
joint_matrix_load(sg, sub_b, | ||
accB.get_pointer() + (k) * (N) + | ||
sg_starty / SG_SZ * TN * 2, | ||
N * 2, matrix_layout::packed_b); | ||
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c); | ||
} | ||
joint_matrix_store(sg, sub_c, | ||
accC.get_pointer() + (sg_startx * TM) * N + | ||
sg_starty / SG_SZ * TN, | ||
N, matrix_layout::row_major); | ||
}); // parallel for | ||
}).wait(); | ||
} | ||
|
||
static constexpr size_t MATRIX_M = TM * 2; | ||
static constexpr size_t MATRIX_N = TN * 2; | ||
static constexpr size_t MATRIX_K = TK * 2; | ||
unsigned short A[MATRIX_M][MATRIX_K]; | ||
unsigned short B[MATRIX_K / 2][MATRIX_N * 2]; | ||
float C[MATRIX_M][MATRIX_N]; | ||
float D[MATRIX_M][MATRIX_N]; | ||
|
||
float make_fp32(short x) { | ||
unsigned int y = x; | ||
y = y << 16; | ||
float *res = reinterpret_cast<float *>(&y); | ||
return *res; | ||
} | ||
|
||
unsigned short make_bf16(float x) { | ||
int *res = reinterpret_cast<int *>(&x); | ||
*res = *res >> 16; | ||
return (unsigned short)*res; | ||
} | ||
|
||
void matrix_multiply_ref(int *A_mem, int *B_mem, int *C_mem, int M, int N, | ||
int K) { | ||
// tiling | ||
for (int m = 0; m < M; m++) | ||
for (int n = 0; n < N; n++) { | ||
for (int k = 0; k < K; k++) { | ||
short *va = (short *)(A_mem + m * K + k); | ||
short *vb = (short *)(B_mem + k * N + n); | ||
float acc = *((float *)(C_mem + m * N + n)); | ||
// FIXME: Should we do reduce-add in another version? | ||
for (int i = 0; i < 2; i++) { | ||
acc += (make_fp32(va[i]) * make_fp32(vb[i])); | ||
} | ||
*((float *)(C_mem + m * N + n)) = acc; | ||
} | ||
} | ||
} | ||
|
||
int main() { | ||
for (int i = 0; i < MATRIX_M; i++) { | ||
for (int j = 0; j < MATRIX_K; j++) { | ||
A[i][j] = make_bf16(1.0f * (i + j)); | ||
} | ||
} | ||
for (int i = 0; i < MATRIX_K / 2; i++) { | ||
for (int j = 0; j < MATRIX_N * 2; j++) { | ||
B[i][j] = make_bf16(2.0f * i + 3.0f * j); | ||
} | ||
} | ||
for (int i = 0; i < MATRIX_M; i++) { | ||
for (int j = 0; j < MATRIX_N; j++) { | ||
C[i][j] = 1.0; | ||
D[i][j] = 1.0; | ||
} | ||
} | ||
|
||
big_matrix<float, MATRIX_M, MATRIX_N> MC((float *)&C); | ||
big_matrix<float, MATRIX_M, MATRIX_N> MD((float *)&D); | ||
big_matrix<unsigned short, MATRIX_M, MATRIX_K> MA((unsigned short *)&A); | ||
big_matrix<unsigned short, MATRIX_K / 2, MATRIX_N * 2> MB( | ||
(unsigned short *)&B); | ||
matrix_multiply(MC, MA, MB); | ||
matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M, | ||
MATRIX_N, MATRIX_K / 2); | ||
|
||
bool res = true; | ||
for (int i = 0; i < MATRIX_M; i++) { | ||
for (int j = 0; j < MATRIX_N; j++) { | ||
if (C[i][j] != D[i][j]) | ||
res = false; | ||
} | ||
} | ||
if (res) | ||
std::cout << "passed\n"; | ||
else | ||
std::cout << "failed\n"; | ||
for (int i = 0; i < MATRIX_M; i++) { | ||
for (int j = 0; j < MATRIX_N; j++) | ||
std::cout << C[i][j] << ", "; | ||
std::cout << "\n"; | ||
} | ||
std::cout << std::endl; | ||
for (int i = 0; i < MATRIX_M; i++) { | ||
for (int j = 0; j < MATRIX_N; j++) | ||
std::cout << D[i][j] << ", "; | ||
std::cout << "\n"; | ||
} | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.