Skip to content
This repository was archived by the owner on Mar 28, 2023. It is now read-only.

[SYCL][Matrix] Add the 8 bit type variants #443

Merged
merged 3 commits into from
Sep 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions SYCL/Matrix/joint_matrix_bf16.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@
// RUN: %CPU_RUN_PLACEHOLDER %t.out
// RUN: %GPU_RUN_PLACEHOLDER %t.out

// XFAIL: *

#include <CL/sycl.hpp>
#include <iostream>

Expand All @@ -22,7 +20,7 @@ using namespace sycl::ext::oneapi::experimental::matrix;
#define SG_SZ 8

#define TM 8
#define TN SG_SIZE
#define TN SG_SZ
#define TK 16

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
Expand Down
178 changes: 178 additions & 0 deletions SYCL/Matrix/joint_matrix_ss_int8.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
//==-------- joint_matrix_ss_int8.cpp - DPC++ joint_matrix------------ ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: matrix

// RUN: %clangxx -fsycl %s -o %t.out
// RUN: %CPU_RUN_PLACEHOLDER %t.out
// RUN: %GPU_RUN_PLACEHOLDER %t.out

#include <CL/sycl.hpp>
#include <iostream>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;

#define SG_SZ 8

#define TM 8
#define TN SG_SZ
#define TK 32

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
public:
T *mat;

public:
T *get_data() { return mat; }
void set_data(T *data) { mat = data; }
big_matrix(T *data) : mat(data) {}
};

template <typename T1, typename T2, size_t NUM_ROWS_A, size_t NUM_COLS_A,
size_t NUM_ROWS_B, size_t NUM_COLS_B, size_t NUM_ROWS_C,
size_t NUM_COLS_C>
void matrix_multiply(big_matrix<T1, NUM_ROWS_C, NUM_COLS_C> &C,
big_matrix<T2, NUM_ROWS_A, NUM_COLS_A> &A,
big_matrix<T2, NUM_ROWS_B, NUM_COLS_B> &B) {
size_t M = NUM_ROWS_C;
size_t N = NUM_COLS_C;
size_t K = NUM_COLS_A;
// B => K/4 x N*4, A => M x K, C => M, N
// stride should be X's cols, e.g., B's stirde = N*4
assert(NUM_ROWS_C == NUM_ROWS_A && NUM_COLS_A == NUM_ROWS_B * 4);
size_t NDRangeM = M / TM;
size_t NDRangeN = N / TN;
buffer<int8_t, 2> bufA(A.get_data(), range<2>(M, K));
buffer<int8_t, 2> bufB(B.get_data(), range<2>(K, N));
buffer<int32_t, 2> bufC(C.get_data(), range<2>(M, N));

queue q;
q.submit([&](handler &cgh) {
auto accC = bufC.get_access<access::mode::read_write>(cgh);
auto accA = bufA.get_access<access::mode::read_write>(cgh);
auto accB = bufB.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class imatrix>(
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}),
[accA, accB, accC, M, N, K](nd_item<2> spmd_item)

{
// The submatrix API has to be accessed by all the workitems in a
// subgroup these functions will be called once by the subgroup no
// code divergence between the workitems
const auto global_idx = spmd_item.get_global_id(0);
const auto global_idy = spmd_item.get_global_id(1);
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
const auto sg_starty = global_idy - spmd_item.get_local_id(1);

ext::oneapi::sub_group sg = spmd_item.get_sub_group();
joint_matrix<int8_t, TM, TK> sub_a(sg);
// For B, since current implementation does not support non-packed
// layout, users need to specify the updated VNNI sizes along with
// the packed_b layout. By default, the layout is row_major and size
// is (TK, TN).
joint_matrix<int8_t, TK, TN, matrix_layout::packed_b> sub_b(sg);
joint_matrix<int32_t, TM, TN> sub_c(sg);

joint_matrix_load(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
for (int k = 0; k < K / TK; k += 1) {
joint_matrix_load(
sg, sub_a, accA.get_pointer() + (sg_startx * TM) * K + k * TK,
K, matrix_layout::packed_a);
// Assuming B data is already in VNNI format.
joint_matrix_load(sg, sub_b,
accB.get_pointer() + (k * TK / 4) * (N * 4) +
sg_starty / SG_SZ * TN * 4,
N * 4, matrix_layout::packed_b);
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
}
joint_matrix_store(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
}); // parallel for
}).wait();
}

static constexpr size_t MATRIX_M = TM * 2;
static constexpr size_t MATRIX_N = TN * 2;
static constexpr size_t MATRIX_K = TK * 2;
int8_t A[MATRIX_M][MATRIX_K];
int8_t B[MATRIX_K / 4][MATRIX_N * 4];
int32_t C[MATRIX_M][MATRIX_N];
int32_t D[MATRIX_M][MATRIX_N];

void matrix_multiply_ref(int32_t *A_mem, int32_t *B_mem, int32_t *C_mem, int M,
int N, int K) {
// tiling
for (int m = 0; m < M; m++)
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
char *va = (char *)(A_mem + m * K + k);
char *vb = (char *)(B_mem + k * N + n);
int acc = *(C_mem + m * N + n);
for (int i = 0; i < 4; i++) {
acc += (va[i] * vb[i]);
}
*(C_mem + m * N + n) = acc;
}
}
}

int main() {
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_K; j++) {
A[i][j] = i + 2 * j;
}
}
for (int i = 0; i < MATRIX_K / 4; i++) {
for (int j = 0; j < MATRIX_N * 4; j++) {
B[i][j] = i + j;
}
}
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
C[i][j] = 1;
D[i][j] = 1;
}
}

big_matrix<int32_t, MATRIX_M, MATRIX_N> MC((int32_t *)&C);
big_matrix<int32_t, MATRIX_M, MATRIX_N> MD((int32_t *)&D);
big_matrix<int8_t, MATRIX_M, MATRIX_K> MA((int8_t *)&A);
big_matrix<int8_t, MATRIX_K / 4, MATRIX_N * 4> MB((int8_t *)&B);
matrix_multiply(MC, MA, MB);
matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M,
MATRIX_N, MATRIX_K / 4);

bool res = true;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
if (C[i][j] != D[i][j])
res = false;
}
}
if (res)
std::cout << "passed\n";
else
std::cout << "failed\n";
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << C[i][j] << ", ";
std::cout << "\n";
}
std::cout << std::endl;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << D[i][j] << ", ";
std::cout << "\n";
}
}
180 changes: 180 additions & 0 deletions SYCL/Matrix/joint_matrix_su_int8.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
//==-------- joint_matrix_su_int8.cpp - DPC++ joint_matrix------------ ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: matrix

// RUN: %clangxx -fsycl %s -o %t.out
// RUN: %CPU_RUN_PLACEHOLDER %t.out
// RUN: %GPU_RUN_PLACEHOLDER %t.out

#include <CL/sycl.hpp>
#include <iostream>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;

#define SG_SZ 8

#define TM 8
#define TN SG_SZ
#define TK 32

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
public:
T *mat;

public:
T *get_data() { return mat; }
void set_data(T *data) { mat = data; }
big_matrix(T *data) : mat(data) {}
};

template <typename T1, typename T2, typename T3, size_t NUM_ROWS_A,
size_t NUM_COLS_A, size_t NUM_ROWS_B, size_t NUM_COLS_B,
size_t NUM_ROWS_C, size_t NUM_COLS_C>
void matrix_multiply(big_matrix<T1, NUM_ROWS_C, NUM_COLS_C> &C,
big_matrix<T2, NUM_ROWS_A, NUM_COLS_A> &A,
big_matrix<T3, NUM_ROWS_B, NUM_COLS_B> &B) {
size_t M = NUM_ROWS_C;
size_t N = NUM_COLS_C;
size_t K = NUM_COLS_A;
// B => K/4 x N*4, A => M x K, C => M, N
// stride should be X's cols, e.g., B's stirde = N*4
assert(NUM_ROWS_C == NUM_ROWS_A && NUM_COLS_A == NUM_ROWS_B * 4);
size_t NDRangeM = M / TM;
size_t NDRangeN = N / TN;
buffer<int8_t, 2> bufA(A.get_data(), range<2>(M, K));
buffer<uint8_t, 2> bufB(B.get_data(), range<2>(K, N));
buffer<int32_t, 2> bufC(C.get_data(), range<2>(M, N));

queue q;
q.submit([&](handler &cgh) {
auto accC = bufC.get_access<access::mode::read_write>(cgh);
auto accA = bufA.get_access<access::mode::read_write>(cgh);
auto accB = bufB.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class imatrix>(
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}),
[accA, accB, accC, M, N, K](nd_item<2> spmd_item)

{
// The submatrix API has to be accessed by all the workitems in a
// subgroup these functions will be called once by the subgroup no
// code divergence between the workitems
const auto global_idx = spmd_item.get_global_id(0);
const auto global_idy = spmd_item.get_global_id(1);
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
const auto sg_starty = global_idy - spmd_item.get_local_id(1);

ext::oneapi::sub_group sg = spmd_item.get_sub_group();
joint_matrix<int8_t, TM, TK> sub_a(sg);
// For B, since current implementation does not support non-packed
// layout, users need to specify the updated VNNI sizes along with
// the packed_b layout. By default, the layout is row_major and size
// is (TK, TN).
joint_matrix<uint8_t, TK, TN, matrix_layout::packed_b> sub_b(sg);
joint_matrix<int32_t, TM, TN> sub_c(sg);

// AMX: 8 register tiles : 1k byte size, SMmaxxSKmax =16x64
// strideX = X's cols, so strideC = N, strideA = K, strideB = N*4
joint_matrix_load(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
for (int k = 0; k < K / TK; k += 1) {
joint_matrix_load(
sg, sub_a, accA.get_pointer() + (sg_startx * TM) * K + k * TK,
K, matrix_layout::packed_a);
// Assuming B data is already in VNNI format.
joint_matrix_load(sg, sub_b,
accB.get_pointer() + (k * TK / 4) * (N * 4) +
sg_starty / SG_SZ * TN * 4,
N * 4, matrix_layout::packed_b);
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
}
joint_matrix_store(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
}); // parallel for
}).wait();
}

static constexpr size_t MATRIX_M = TM * 2;
static constexpr size_t MATRIX_N = TN * 2;
static constexpr size_t MATRIX_K = TK * 2;
int8_t A[MATRIX_M][MATRIX_K];
uint8_t B[MATRIX_K / 4][MATRIX_N * 4];
int32_t C[MATRIX_M][MATRIX_N];
int32_t D[MATRIX_M][MATRIX_N];

void matrix_multiply_ref(int32_t *A_mem, int32_t *B_mem, int32_t *C_mem, int M,
int N, int K) {
// tiling
for (int m = 0; m < M; m++)
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
char *va = (char *)(A_mem + m * K + k);
char *vb = (char *)(B_mem + k * N + n);
int acc = *(C_mem + m * N + n);
for (int i = 0; i < 4; i++) {
acc += (va[i] * vb[i]);
}
*(C_mem + m * N + n) = acc;
}
}
}

int main() {
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_K; j++) {
A[i][j] = i + 2 * j;
}
}
for (int i = 0; i < MATRIX_K / 4; i++) {
for (int j = 0; j < MATRIX_N * 4; j++) {
B[i][j] = i + j;
}
}
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
C[i][j] = 1;
D[i][j] = 1;
}
}

big_matrix<int32_t, MATRIX_M, MATRIX_N> MC((int32_t *)&C);
big_matrix<int32_t, MATRIX_M, MATRIX_N> MD((int32_t *)&D);
big_matrix<int8_t, MATRIX_M, MATRIX_K> MA((int8_t *)&A);
big_matrix<uint8_t, MATRIX_K / 4, MATRIX_N * 4> MB((uint8_t *)&B);
matrix_multiply(MC, MA, MB);
matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M,
MATRIX_N, MATRIX_K / 4);

bool res = true;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
if (C[i][j] != D[i][j])
res = false;
}
}
if (res)
std::cout << "passed\n";
else
std::cout << "failed\n";
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << C[i][j] << ", ";
std::cout << "\n";
}
std::cout << std::endl;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << D[i][j] << ", ";
std::cout << "\n";
}
}
Loading