-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter definition. #109144
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter definition. #109144
Conversation
✅ With the latest revision this PR passed the C/C++ code formatter. |
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Chao Chen (chencha3) ChangesThe PR makes the following refine changes to the XeGPU dialect.
Patch is 52.14 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/109144.diff 7 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index f3ca09a6a68ea8..26eec0d4f2082a 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -19,12 +19,18 @@ class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [],
let mnemonic = attrMnemonic;
}
-def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> {
+class XeGPU_TensorDescAttr<string name, string attrMnemonic, list<Trait> traits = [],
+ string baseCppClass = "::mlir::Attribute">
+ : XeGPUAttr<name, attrMnemonic, traits, baseCppClass> {
+ let assemblyFormat = "`<` struct(params) `>`";
+}
+
+def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_tdesc_attr"> {
let summary = [{a composite attribute for `TensorDescType`}];
- let description = [{`TensorDescAttr` (or `tdesc_attr`) is a composite
+ let description = [{`BlockTensorDesc` (or `block_tdesc_attr`) is a composite
attribute defined for `TensorDescType` for describing following
properties of a `TensorDesc`.
- 1. `memory_scope`: It describes where the data block described by the
+ 1. `memory_space`: It describes where the data block described by the
TensorDesc is located, `Global` device memory or `Shared` local memory.
It is default to `Global`.
2. `array_length`: It describes how many horizontally consecutive blocks
@@ -33,43 +39,63 @@ def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> {
8x32. Its default value is 1.
3. `boundary_check`: It is used to indicates the hardware whether to do
out-of-boundary check. The default value is true.
- 4. `scattered`: It is used to differenciate TensorDescs created from
- `create_nd_tdesc` vs from `create_tdesc`.
}];
let parameters = (ins
- OptionalParameter<"MemoryScopeAttr">: $memory_scope,
+ OptionalParameter<"MemorySpaceAttr">: $memory_space,
OptionalParameter<"IntegerAttr", "1">: $array_length,
- OptionalParameter<"BoolAttr", "true">: $boundary_check,
- OptionalParameter<"BoolAttr", "false">: $scattered
+ OptionalParameter<"BoolAttr", "true">: $boundary_check
);
let builders = [
AttrBuilder<(ins
- CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope,
+ CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
CArg<"int", "1">:$array_length,
- CArg<"bool", "true">: $boundary_check,
- CArg<"bool", "false">: $scattered
+ CArg<"bool", "true">: $boundary_check
)>
];
- let assemblyFormat = "`<` struct(params) `>`";
}
+def XeGPU_ScatterTensorDescAttr: XeGPU_TensorDescAttr<"ScatterTensorDesc", "scatter_tdesc_attr"> {
+ let summary = [{a composite attribute for `TensorDescType`}];
+ let description = [{`ScatterTensorDesc` (or `scatter_tdesc_attr`) is a composite
+ attribute defined for `TensorDescType` for describing following
+ properties of a `TensorDesc`.
+ 1. `memory_space`: It describes where the data block described by the
+ TensorDesc is located, `Global` device memory or `Shared` local memory.
+ It is default to `Global`.
+ 2. `chunk_size`: indicates number of continious elements accessed for each
+ offset, default is 1. It is used with `scattered` attr only.
+ }];
+
+ let parameters = (ins
+ OptionalParameter<"MemorySpaceAttr">: $memory_space,
+ OptionalParameter<"IntegerAttr", "1">: $chunk_size
+ );
+
+ let builders = [
+ AttrBuilder<(ins
+ CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
+ CArg<"int", "1">: $chunk_size
+ )>
+ ];
+ }
+
//===----------------------------------------------------------------------===//
// XeGPU Memory Scope Enums.
//===----------------------------------------------------------------------===//
-def XeGPU_MemoryScopeGlobal: I32EnumAttrCase<"Global", 0, "global">;
-def XeGPU_MemoryScopeShared: I32EnumAttrCase<"SLM", 1, "slm">;
-def XeGPU_MemoryScope: I32EnumAttr<"MemoryScope",
+def XeGPU_MemorySpaceGlobal: I32EnumAttrCase<"Global", 0, "global">;
+def XeGPU_MemorySpaceShared: I32EnumAttrCase<"SLM", 3, "slm">;
+def XeGPU_MemorySpace: I32EnumAttr<"MemorySpace",
"The address space of the memory the tensor descritor is created for",
- [XeGPU_MemoryScopeGlobal, XeGPU_MemoryScopeShared]> {
+ [XeGPU_MemorySpaceGlobal, XeGPU_MemorySpaceShared]> {
let genSpecializedAttr = 0;
let cppNamespace = "::mlir::xegpu";
}
-def XeGPU_MemoryScopeAttr:
- EnumAttr<XeGPU_Dialect, XeGPU_MemoryScope, "memory_scope"> {
+def XeGPU_MemorySpaceAttr:
+ EnumAttr<XeGPU_Dialect, XeGPU_MemorySpace, "memory_space"> {
let summary = [{Describe the location of data described by a `TensorDesc`:
Global device memory (`Global`) or Shared local memory (`SLM`).}];
let assemblyFormat = "$value";
@@ -116,4 +142,4 @@ def XeGPU_FenceScopeAttr:
let assemblyFormat = "$value";
}
-#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
\ No newline at end of file
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index c32c7541c39791..e24a056de2caf3 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -218,6 +218,23 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; }
mlir::Value getViewSource() { return getSource(); }
+
+ unsigned getSourceMemorySpace() {
+ auto srcTy = getSourceType();
+ if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
+ auto attr = memrefTy.getMemorySpace();
+ if (attr) {
+ if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr)) {
+ return static_cast<unsigned>(intAttr.getInt());
+ }
+ if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
+ return static_cast<unsigned>(memSpaceAttr.getValue());
+ }
+ }
+ // take global as default memory scope.
+ return static_cast<unsigned>(MemorySpace::Global);
+ }
+
}];
}
@@ -411,8 +428,10 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
implying each element in the array corresponds to a work-item (SIMT lane)
in the subgroup.
- * chunk_size: [optional attribute] indicates number of continious
- elements accessed for each offset, default is 1.
+
+ The first dimension of the result TensorDesc corresponds to work-items, so it should
+ match the dimension of offsets. It may also has a second dimension corresponding to
+ the chunk_size if the chunk size is larger than 1.
Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
```mlir
@@ -424,29 +443,22 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
+ %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>
```
Example 3. It is similar to Example 2, but there is some overlaps among workitems.
It accesses: a[0:7], a[4:11], a[8:15], a[12:19]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 4, 8, 12] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
+ %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>>
```
}];
let arguments = (ins XeGPU_BaseAddrType: $source,
Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets,
- DefaultValuedAttr<I64Attr, "1">: $chunk_size);
+ DenseI64ArrayAttr: $const_offsets);
let results = (outs XeGPU_TensorDesc:$TensorDesc);
- let builders = [
- OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source,
- "llvm::ArrayRef<OpFoldResult>": $offsets,
- CArg<"uint32_t", "1"> : $chunk_size)>,
- ];
-
let assemblyFormat = [{
$source
custom<DynamicIndexList>($offsets, $const_offsets)
@@ -473,6 +485,22 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
assert(idx < getNumOffsets() && "Invalid out of bound access.");
return getMixedOffsets()[idx];
}
+
+ unsigned getSourceMemorySpace() {
+ auto srcTy = getSource().getType();
+ if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
+ auto attr = memrefTy.getMemorySpace();
+ if (attr) {
+ if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr))
+ return static_cast<unsigned>(intAttr.getInt());
+ if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
+ return static_cast<unsigned>(memSpaceAttr.getValue());
+ }
+ }
+ // take global as default memory scope.
+ return static_cast<unsigned>(MemorySpace::Global);
+ }
+
}];
let hasVerifier = 1;
@@ -520,28 +548,31 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
let description = [{ It (aka. load) load data per each work-item. The output
describes the data being loaded at the subgroup level, so its size is
- consistent with the number of work-items in a subgroup. When `chunk_size_per_lane`
- attribute is larger than 1 in TensorDesc, the output vector will be 2D vector,
- with dim-1 correspoding to the chunk size.
+ consistent with the number of work-items in a subgroup. When the chunk size
+ is larger than 2, the output vector is a 2D vector, with dim-1 correspoding
+ to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item.
+ Specially, there is a transpose effect on the result (as compared to the TensorDesc)
+ due to the hardware implementation. Therefore, a transpose attribute is introduced
+ on purpose, making sure users are aware of this implicit transformation.
The mask operand masks out memory access so that it is safe to pass out-of-boundary
addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
Example:
```mlir
- %2 = xegpu.load %1, %0 {transpose = [1, 0],
+ %2 = xegpu.load %1, %0 {transpose,
l1_hint = #xegpu.cache_hint<cached>,
l2_hint = #xegpu.cache_hint<uncached>,
l3_hint = #xegpu.cache_hint<uncached>}
- : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true>>, vector<16xi1>
- -> vector<16xf32>
+ : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global>>,
+ vector<16xi1> -> vector<16xf32>
```
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
XeGPU_MaskType: $mask,
- OptionalAttr<DenseI64ArrayAttr>: $transpose,
+ OptionalAttr<UnitAttr>: $transpose,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -573,11 +604,15 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
let hasVerifier = 1;
}
-def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDesc"]>,
- AllElementTypesMatch<["value", "TensorDesc"]>]> {
+def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "TensorDesc"]>,
+ AllElementTypesMatch<["value", "TensorDesc"]>]> {
let summary = "store data to scattered memory locations.";
- let description = [{ It (aka. store) stores data to scattered memory locations.
- It has similar semantic to `load_gather`.
+ let description = [{ It (aka. store) stores data to scattered memory locations. The value is
+ typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be
+ a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes
+ and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter`
+ has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
+ introduced on purpose, making sure users are aware of this implicit transformation.
Example:
```mlir
@@ -592,6 +627,7 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDe
XeGPU_ValueType: $value,
XeGPU_TensorDesc: $TensorDesc,
XeGPU_MaskType: $mask,
+ OptionalAttr<UnitAttr>: $transpose,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -723,7 +759,7 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure,
AllElementTypesMatch<["tensorDesc", "value", "result"]>,
- AllShapesMatch<["tensorDesc", "mask", "value", "result"]>]> {
+ AllShapesMatch<["tensorDesc", "value", "result"]>]> {
let summary = "Atomic ready-modify-write operation on the TensorDesc. ";
let description = [{
@@ -808,7 +844,7 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
2. `Fence_scope` describes the scope of fence. "Workgroup" means that the scope would be
within each workgroup. "GPU" means the scope would be across workgroups within the GPU.
}];
- let arguments = (ins XeGPU_MemoryScopeAttr: $memory_kind,
+ let arguments = (ins XeGPU_MemorySpaceAttr: $memory_kind,
XeGPU_FenceScopeAttr: $fence_scope);
let assemblyFormat = [{`memory_kind` `=` `` $memory_kind `,` `fence_scope` `=` `` $fence_scope attr-dict}];
let extraClassDeclaration = extraBaseClassDeclaration;
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index 9f101a71697b56..0ce1211664b5ba 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -48,7 +48,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
Similar to the builtin tensor, it also provides an optinal attribute to encoding
the following information via the TensorDescAttr object:
- * memory_scope (xegpu::MemoryScope): [optional] where the data is located,
+ * memory_space (xegpu::MemorySpace): [optional] where the data is located,
global memory or shared memory. It is default to Global.
* array_length (int): [optional] The number of contiguous blocks with size as `shape`,
that will be loaded by block load at a time. It is default to 1.
@@ -63,7 +63,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
element-type ::= float-type | integer-type | index-type
dim-list := (static-dim-list `x`)?
static-dim-list ::= decimal-literal `x` decimal-literal
- attr-list = (, memory_scope = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)?
+ attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)?
```
Examples:
@@ -76,7 +76,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
xegpu.tensor_desc<8x16xf32>
// A TensorDesc with 8x16 f32 elements for a memory region in shared memory space.
- xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+ xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_space = slm>>
```
}];
@@ -88,11 +88,14 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
TypeBuilderWithInferredContext<(ins
"llvm::ArrayRef<int64_t>": $shape,
"mlir::Type": $elementType,
- CArg<"bool", "false">: $scattered,
CArg<"int", "1">: $array_length,
- CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope,
- CArg<"bool", "true">: $boundary_check
- )>
+ CArg<"bool", "true">: $boundary_check,
+ CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>,
+ TypeBuilderWithInferredContext<(ins
+ "llvm::ArrayRef<int64_t>": $shape,
+ "mlir::Type": $elementType,
+ CArg<"int", "1">: $chunk_size,
+ CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>
];
let extraClassDeclaration = [{
@@ -110,40 +113,58 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
return llvm::cast<TensorDescType>(cloneWith(getShape(), elementType));
}
- TensorDescAttr getEncodingAsTensorDescAttr() const {
- return llvm::dyn_cast_if_present<TensorDescAttr>(getEncoding());
+ BlockTensorDescAttr getEncodingAsBlockTensorDescAttr() const {
+ return llvm::dyn_cast_if_present<BlockTensorDescAttr>(getEncoding());
}
- xegpu::MemoryScope getMemoryScope() const {
- auto attr = getEncodingAsTensorDescAttr();
- if (attr && attr.getMemoryScope())
- return attr.getMemoryScope().getValue();
+ ScatterTensorDescAttr getEncodingAsScatterTensorDescAttr() const {
+ return llvm::dyn_cast_if_present<ScatterTensorDescAttr>(getEncoding());
+ }
+
+ xegpu::MemorySpace getMemorySpace() const {
+ auto block_attr = getEncodingAsBlockTensorDescAttr();
+ if (block_attr && block_attr.getMemorySpace())
+ return block_attr.getMemorySpace().getValue();
+
+ auto scatter_attr = getEncodingAsScatterTensorDescAttr();
+ if (scatter_attr && scatter_attr.getMemorySpace())
+ return scatter_attr.getMemorySpace().getValue();
+
// return default value
- return MemoryScope::Global;
+ return MemorySpace::Global;
}
int getArrayLength() {
- auto attr = getEncodingAsTensorDescAttr();
- if (attr && attr.getArrayLength())
- return attr.getArrayLength().getInt();
+ auto attr = getEncoding();
+ auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr);
+ assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr.");
+ if (block_attr && block_attr.getArrayLength())
+ return block_attr.getArrayLength().getInt();
// return default value
return 1;
}
bool getBoundaryCheck() {
- auto attr = getEncodingAsTensorDescAttr();
- if (attr && attr.getBoundaryCheck())
- return attr.getBoundaryCheck().getValue();
+ auto attr = getEncoding();
+ auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr);
+ assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr.");
+ if (block_attr && block_attr.getBoundaryCheck())
+ return block_attr.getBoundaryCheck().getValue();
// return default value
return true;
}
- bool getScattered() {
- auto attr = getEncodingAsTensorDescAttr();
- if (attr && attr.getScattered())
- return attr.getScattered().getValue();
- // return default value
- return false;
+ bool isScattered() {
+ return bool(getEncodingAsScatterTensorDescAttr());
+ }
+
+ int getChunkSize() {
+ auto attr = getEncoding();
+ auto scatter_attr = mlir::dyn_cast_if_present<ScatterTensorDescAttr>(attr);
+ assert((!attr || scatter_attr) && "invalid on non ScatterTensorDescAttr.");
+ if (scatter_attr && scatter_attr.getChunkSize())
+ return scatter_attr.getChunkSize().getInt();
+ return 1;
}
}];
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
index 24719fe748fe4f..1dfbaed454c193 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -30,23 +30,35 @@ void XeGPUDialect::initialize() {
}
//===-------------------------------------------...
[truncated]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good % nit
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/117/builds/2185 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/53/builds/5107 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/177/builds/5459 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/116/builds/4036 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/140/builds/7234 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/138/builds/4060 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/89/builds/6966 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/129/builds/6275 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/172/builds/3853 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/29/builds/4152 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/130/builds/3964 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/80/builds/4006 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/157/builds/8449 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/20/builds/3540 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/50/builds/4024 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/153/builds/9772 Here is the relevant piece of the build log for the reference
|
…efb6db236 Local branch amd-gfx 842efb6 Merged main:e0bd8d3485075d24ecff2b4f5d9e2117853bd08b into amd-gfx:44ce984e8f2a Remote branch main 2162723 [MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter definition. (llvm#109144)
The PR makes the following refine changes to the XeGPU dialect.
TensorDescAttr
into two independent attributes,BlockTensorDescAttr
andScatterTensorDescAttr
MemoryScopeAttr
toMemorySpaceAttr
, and updated the enumeration value for shared memory following OpenCL standard.transpose
UnitAttr toStoreScatterOp
andLoadGatherOp
CreateNdDesc
andCreateDesc
op, addes valid and invalid test cases for them.