Skip to content

Update input names from input to input1 for Table, Reverse, Slice #109807

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 26, 2024

Conversation

Jerry-Ge
Copy link
Member

  • For input naming consistency, updated the inputs to input1 for Table, Reverse and Slice operator

- For input naming consistency, updated the inputs to input1 for Table,
  Reverse and Slice operator

Signed-off-by: Jerry Ge <[email protected]>
@llvmbot
Copy link
Member

llvmbot commented Sep 24, 2024

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-linalg

Author: Jerry-Ge (Jerry-Ge)

Changes
  • For input naming consistency, updated the inputs to input1 for Table, Reverse and Slice operator

Full diff: https://github.com/llvm/llvm-project/pull/109807.diff

5 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td (+4-4)
  • (modified) mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp (+2-2)
  • (modified) mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp (+2-2)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp (+7-7)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+4-4)
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 539b7cd0b74267..07402c8695b382 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -881,7 +881,7 @@ def Tosa_TableOp : Tosa_InferShapedTypeOp<"table"> {
   }];
 
   let arguments = (ins
-    Tosa_Tensor: $input,
+    Tosa_Tensor: $input1,
     Tosa_Tensor1D: $table
   );
 
@@ -890,7 +890,7 @@ def Tosa_TableOp : Tosa_InferShapedTypeOp<"table"> {
   );
 
   let assemblyFormat = [{
-    $input `,` $table attr-dict `:` `(` type($input) `,` type($table) `)` `->` type($output)
+    $input1 `,` $table attr-dict `:` `(` type($input1) `,` type($table) `)` `->` type($output)
   }];
 
   let hasVerifier = 1;
@@ -1640,7 +1640,7 @@ def Tosa_ReverseOp: Tosa_Op<"reverse", [
   }];
 
   let arguments = (ins
-    Tosa_Tensor:$input,
+    Tosa_Tensor:$input1,
     I32Attr:$axis
   );
 
@@ -1667,7 +1667,7 @@ def Tosa_SliceOp : Tosa_InferShapedTypeOp<"slice"> {
   }];
 
   let arguments = (ins
-    Tosa_Tensor:$input,
+    Tosa_Tensor:$input1,
     DenseI64ArrayAttr:$start,
     DenseI64ArrayAttr:$size
   );
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 93e284af051883..01fdd57260797b 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -1830,7 +1830,7 @@ class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> {
   LogicalResult matchAndRewrite(tosa::ReverseOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.getInput();
+    Value input = op.getInput1();
     auto inputTy = cast<ShapedType>(input.getType());
     auto resultTy = cast<ShapedType>(op.getType());
     auto axis = op.getAxis();
@@ -2161,7 +2161,7 @@ class TableConverter : public OpRewritePattern<tosa::TableOp> {
   LogicalResult matchAndRewrite(tosa::TableOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.getInput();
+    Value input = op.getInput1();
     Value table = op.getTable();
     auto inputTy = cast<ShapedType>(input.getType());
     auto tableTy = cast<ShapedType>(table.getType());
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index c0c015ab34aab0..3f104ed1e3f7fb 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -144,7 +144,7 @@ TensorType inferReshapeCollapsedType(TensorType lhsType, TensorType rhsType) {
   for (; currRhsDim < rhsShape.size(); currRhsDim++) {
     assert(rhsShape[currRhsDim] == 1);
   }
-  
+
   return lhsType.clone(intermediateShape);
 }
 
@@ -264,7 +264,7 @@ class SliceConverter : public OpConversionPattern<tosa::SliceOp> {
   matchAndRewrite(tosa::SliceOp sliceOp, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const final {
     Location loc = sliceOp.getLoc();
-    Value input = adaptor.getInput();
+    Value input = adaptor.getInput1();
     ShapedType resultType = cast<ShapedType>(sliceOp.getType());
     if (llvm::isa<UnrankedTensorType>(resultType))
       return failure();
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 03876a7c64d07c..c5fa3c41181784 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -380,7 +380,7 @@ struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
 
   LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
                                 PatternRewriter &rewriter) const override {
-    Value sliceInput = sliceOp.getInput();
+    Value sliceInput = sliceOp.getInput1();
     auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>();
     if (!concatOp)
       return rewriter.notifyMatchFailure(
@@ -919,11 +919,11 @@ OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) {
 }
 
 OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
-  auto operand = getInput();
+  auto operand = getInput1();
   auto operandTy = llvm::cast<ShapedType>(operand.getType());
   auto axis = getAxis();
   auto operandAttr =
-      llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput());
+      llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput1());
   if (operandAttr)
     return operandAttr;
 
@@ -936,16 +936,16 @@ OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
 }
 
 OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
-  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
   auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());
 
   if (!inputTy || !outputTy)
     return {};
 
   if (inputTy == outputTy && inputTy.hasStaticShape())
-    return getInput();
+    return getInput1();
 
-  if (!adaptor.getInput())
+  if (!adaptor.getInput1())
     return {};
 
   // Cannot create an ElementsAttr from non-int/float/index types
@@ -953,7 +953,7 @@ OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
       !outputTy.getElementType().isIntOrIndexOrFloat())
     return {};
 
-  auto operand = llvm::cast<ElementsAttr>(adaptor.getInput());
+  auto operand = llvm::cast<ElementsAttr>(adaptor.getInput1());
   if (operand.isSplat() && outputTy.hasStaticShape()) {
     return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
   }
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 6dce3d03066c9a..e75e275a99ca34 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -850,7 +850,7 @@ LogicalResult tosa::SliceOp::inferReturnTypeComponents(
 }
 
 LogicalResult tosa::SliceOp::verify() {
-  auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+  auto inputType = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
   if (!inputType)
     return success();
 
@@ -869,7 +869,7 @@ LogicalResult tosa::TableOp::inferReturnTypeComponents(
     MLIRContext *context, ::std::optional<Location> location,
     TableOp::Adaptor adaptor,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  ShapeAdaptor inputShape(adaptor.getInput().getType());
+  ShapeAdaptor inputShape(adaptor.getInput1().getType());
 
   if (!inputShape.hasRank()) {
     inferredReturnShapes.push_back(ShapedTypeComponents());
@@ -882,7 +882,7 @@ LogicalResult tosa::TableOp::inferReturnTypeComponents(
 }
 
 LogicalResult tosa::TableOp::verify() {
-  TensorType inputType = getInput().getType();
+  TensorType inputType = getInput1().getType();
   TensorType outputType = getOutput().getType();
 
   if (inputType.hasRank() && outputType.hasRank() &&
@@ -1973,7 +1973,7 @@ void IfOp::print(OpAsmPrinter &p) {
 }
 
 LogicalResult ReverseOp::verify() {
-  TensorType inputType = getInput().getType();
+  TensorType inputType = getInput1().getType();
   TensorType outputType = getOutput().getType();
   int32_t reverseAxis = getAxis();
 

@llvmbot
Copy link
Member

llvmbot commented Sep 24, 2024

@llvm/pr-subscribers-mlir-tosa

Author: Jerry-Ge (Jerry-Ge)

Changes
  • For input naming consistency, updated the inputs to input1 for Table, Reverse and Slice operator

Full diff: https://github.com/llvm/llvm-project/pull/109807.diff

5 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td (+4-4)
  • (modified) mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp (+2-2)
  • (modified) mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp (+2-2)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp (+7-7)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+4-4)
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 539b7cd0b74267..07402c8695b382 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -881,7 +881,7 @@ def Tosa_TableOp : Tosa_InferShapedTypeOp<"table"> {
   }];
 
   let arguments = (ins
-    Tosa_Tensor: $input,
+    Tosa_Tensor: $input1,
     Tosa_Tensor1D: $table
   );
 
@@ -890,7 +890,7 @@ def Tosa_TableOp : Tosa_InferShapedTypeOp<"table"> {
   );
 
   let assemblyFormat = [{
-    $input `,` $table attr-dict `:` `(` type($input) `,` type($table) `)` `->` type($output)
+    $input1 `,` $table attr-dict `:` `(` type($input1) `,` type($table) `)` `->` type($output)
   }];
 
   let hasVerifier = 1;
@@ -1640,7 +1640,7 @@ def Tosa_ReverseOp: Tosa_Op<"reverse", [
   }];
 
   let arguments = (ins
-    Tosa_Tensor:$input,
+    Tosa_Tensor:$input1,
     I32Attr:$axis
   );
 
@@ -1667,7 +1667,7 @@ def Tosa_SliceOp : Tosa_InferShapedTypeOp<"slice"> {
   }];
 
   let arguments = (ins
-    Tosa_Tensor:$input,
+    Tosa_Tensor:$input1,
     DenseI64ArrayAttr:$start,
     DenseI64ArrayAttr:$size
   );
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 93e284af051883..01fdd57260797b 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -1830,7 +1830,7 @@ class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> {
   LogicalResult matchAndRewrite(tosa::ReverseOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.getInput();
+    Value input = op.getInput1();
     auto inputTy = cast<ShapedType>(input.getType());
     auto resultTy = cast<ShapedType>(op.getType());
     auto axis = op.getAxis();
@@ -2161,7 +2161,7 @@ class TableConverter : public OpRewritePattern<tosa::TableOp> {
   LogicalResult matchAndRewrite(tosa::TableOp op,
                                 PatternRewriter &rewriter) const final {
     auto loc = op.getLoc();
-    Value input = op.getInput();
+    Value input = op.getInput1();
     Value table = op.getTable();
     auto inputTy = cast<ShapedType>(input.getType());
     auto tableTy = cast<ShapedType>(table.getType());
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index c0c015ab34aab0..3f104ed1e3f7fb 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -144,7 +144,7 @@ TensorType inferReshapeCollapsedType(TensorType lhsType, TensorType rhsType) {
   for (; currRhsDim < rhsShape.size(); currRhsDim++) {
     assert(rhsShape[currRhsDim] == 1);
   }
-  
+
   return lhsType.clone(intermediateShape);
 }
 
@@ -264,7 +264,7 @@ class SliceConverter : public OpConversionPattern<tosa::SliceOp> {
   matchAndRewrite(tosa::SliceOp sliceOp, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const final {
     Location loc = sliceOp.getLoc();
-    Value input = adaptor.getInput();
+    Value input = adaptor.getInput1();
     ShapedType resultType = cast<ShapedType>(sliceOp.getType());
     if (llvm::isa<UnrankedTensorType>(resultType))
       return failure();
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 03876a7c64d07c..c5fa3c41181784 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -380,7 +380,7 @@ struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
 
   LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
                                 PatternRewriter &rewriter) const override {
-    Value sliceInput = sliceOp.getInput();
+    Value sliceInput = sliceOp.getInput1();
     auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>();
     if (!concatOp)
       return rewriter.notifyMatchFailure(
@@ -919,11 +919,11 @@ OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) {
 }
 
 OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
-  auto operand = getInput();
+  auto operand = getInput1();
   auto operandTy = llvm::cast<ShapedType>(operand.getType());
   auto axis = getAxis();
   auto operandAttr =
-      llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput());
+      llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput1());
   if (operandAttr)
     return operandAttr;
 
@@ -936,16 +936,16 @@ OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
 }
 
 OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
-  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
   auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());
 
   if (!inputTy || !outputTy)
     return {};
 
   if (inputTy == outputTy && inputTy.hasStaticShape())
-    return getInput();
+    return getInput1();
 
-  if (!adaptor.getInput())
+  if (!adaptor.getInput1())
     return {};
 
   // Cannot create an ElementsAttr from non-int/float/index types
@@ -953,7 +953,7 @@ OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
       !outputTy.getElementType().isIntOrIndexOrFloat())
     return {};
 
-  auto operand = llvm::cast<ElementsAttr>(adaptor.getInput());
+  auto operand = llvm::cast<ElementsAttr>(adaptor.getInput1());
   if (operand.isSplat() && outputTy.hasStaticShape()) {
     return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
   }
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 6dce3d03066c9a..e75e275a99ca34 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -850,7 +850,7 @@ LogicalResult tosa::SliceOp::inferReturnTypeComponents(
 }
 
 LogicalResult tosa::SliceOp::verify() {
-  auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+  auto inputType = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
   if (!inputType)
     return success();
 
@@ -869,7 +869,7 @@ LogicalResult tosa::TableOp::inferReturnTypeComponents(
     MLIRContext *context, ::std::optional<Location> location,
     TableOp::Adaptor adaptor,
     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
-  ShapeAdaptor inputShape(adaptor.getInput().getType());
+  ShapeAdaptor inputShape(adaptor.getInput1().getType());
 
   if (!inputShape.hasRank()) {
     inferredReturnShapes.push_back(ShapedTypeComponents());
@@ -882,7 +882,7 @@ LogicalResult tosa::TableOp::inferReturnTypeComponents(
 }
 
 LogicalResult tosa::TableOp::verify() {
-  TensorType inputType = getInput().getType();
+  TensorType inputType = getInput1().getType();
   TensorType outputType = getOutput().getType();
 
   if (inputType.hasRank() && outputType.hasRank() &&
@@ -1973,7 +1973,7 @@ void IfOp::print(OpAsmPrinter &p) {
 }
 
 LogicalResult ReverseOp::verify() {
-  TensorType inputType = getInput().getType();
+  TensorType inputType = getInput1().getType();
   TensorType outputType = getOutput().getType();
   int32_t reverseAxis = getAxis();
 

@Jerry-Ge
Copy link
Member Author

cc @Tai78641 @sjarus

@Jerry-Ge Jerry-Ge merged commit c6876b4 into llvm:main Sep 26, 2024
12 checks passed
Sterling-Augustine pushed a commit to Sterling-Augustine/llvm-project that referenced this pull request Sep 27, 2024
…vm#109807)

- For input naming consistency, updated the inputs to input1 for Table,
Reverse and Slice operator

Signed-off-by: Jerry Ge <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants