-
Notifications
You must be signed in to change notification settings - Fork 14.3k
Revert "[MLIR][TilingInterface] Extend consumer fusion for multi-use of producer shared by terminator ops" #110476
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Abhishek-Varma
wants to merge
1
commit into
main
from
revert-110105-extend_consumer_fusion_for_multi_use_of_producer
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…of produ…" This reverts commit b8c974f.
@llvm/pr-subscribers-mlir-scf @llvm/pr-subscribers-mlir Author: Abhishek Varma (Abhishek-Varma) ChangesReverts llvm/llvm-project#110105 - it got merged accidentally - hence reverting. Full diff: https://github.com/llvm/llvm-project/pull/110476.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
index 50cfd29e6bf907..7cfd772a72b175 100644
--- a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
@@ -1481,29 +1481,21 @@ checkAssumptionForFusingConsumer(tensor::InsertSliceOp candidateSliceOp) {
/// failure otherwise.
static FailureOr<OpOperand *> getConsumerFromUses(Value val,
Block *containingOpBlock) {
- // Check that the value has exactly one use which isn't a scf.yield or a
- // tensor.parallel_insert_slice op.
- OpOperand *operand = nullptr;
- for (OpOperand &opOperand : val.getUses()) {
- Operation *consumerOp = opOperand.getOwner();
- if (isa<scf::YieldOp, tensor::ParallelInsertSliceOp>(consumerOp))
- continue;
- if (operand)
- return failure();
- // TODO: We have to init result of consumer before scf.for, use
- // DestinationStyleOpInterface to get result shape from init for now.
- // Add support for other op such as op has InferTypeOpInterface.
- if (!isa<TilingInterface>(consumerOp) ||
- !isa<DestinationStyleOpInterface>(consumerOp))
- return failure();
- if (containingOpBlock != consumerOp->getBlock())
- return failure();
- operand = &opOperand;
- }
-
- if (operand)
- return operand;
- return failure();
+ // Step 1. Check that the value has exactly one use.
+ if (!llvm::hasSingleElement(val.getUses()))
+ return failure();
+ // Step 2. Get uses.
+ OpOperand &operand = (*val.getUses().begin());
+ Operation *consumerOp = operand.getOwner();
+ // TODO: We have to init result of consumer before scf.for, use
+ // DestinationStyleOpInterface to get result shape from init for now.
+ // Add support for other op such as op has InferTypeOpInterface.
+ if (!isa<TilingInterface>(consumerOp) ||
+ !isa<DestinationStyleOpInterface>(consumerOp))
+ return failure();
+ if (containingOpBlock != consumerOp->getBlock())
+ return failure();
+ return &operand;
}
/// Find the perfectly nested loops outside of given loop(included) sorted from
diff --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
index f5f703d95e2d5b..fdefdcc453ae7a 100644
--- a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
@@ -437,74 +437,3 @@ module attributes {transform.with_named_sequence} {
// CHECK: scf.yield %[[LOOP_RESULT2]]#0, %[[LOOP_RESULT2]]#1 :
// CHECK: }
// CHECK: return %[[LOOP_RESULT1]]#1 :
-
-// -----
-
-// This test case checks fusion of consumer even if the producer has multiple uses.
-// The multiple uses of the producer essentially means that besides the consumer
-// op in concern, the only other uses of the producer are allowed in :-
-// 1. scf.yield
-// 2. tensor.parallel_insert_slice
-
-module {
- module {
- func.func @fuse_consumer_for_multi_use_producer(%arg0: tensor<256x512xf32>, %arg1: tensor<512x256xf32>, %arg2: tensor<256x256xf32>) -> (tensor<256x256xf32>, tensor<256x256xf32>) {
- %c0 = arith.constant 0 : index
- %c64 = arith.constant 64 : index
- %c256 = arith.constant 256 : index
- %cst = arith.constant 0.000000e+00 : f32
- %0 = tensor.empty() : tensor<256x256xf32>
- %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
- %2:2 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %1, %arg5 = %arg2) -> (tensor<256x256xf32>, tensor<256x256xf32>) {
- %3 = scf.for %arg6 = %c0 to %c256 step %c64 iter_args(%arg7 = %arg4) -> (tensor<256x256xf32>) {
- %extracted_slice = tensor.extract_slice %arg7[%arg3, %arg6] [64, 64] [1, 1] : tensor<256x256xf32> to tensor<64x64xf32>
- %extracted_slice_0 = tensor.extract_slice %arg0[%arg3, 0] [64, 512] [1, 1] : tensor<256x512xf32> to tensor<64x512xf32>
- %extracted_slice_1 = tensor.extract_slice %arg1[0, %arg6] [512, 64] [1, 1] : tensor<512x256xf32> to tensor<512x64xf32>
- %5 = linalg.matmul ins(%extracted_slice_0, %extracted_slice_1 : tensor<64x512xf32>, tensor<512x64xf32>) outs(%extracted_slice : tensor<64x64xf32>) -> tensor<64x64xf32>
- %inserted_slice = tensor.insert_slice %5 into %arg7[%arg3, %arg6] [64, 64] [1, 1] : tensor<64x64xf32> into tensor<256x256xf32>
- scf.yield %inserted_slice : tensor<256x256xf32>
- }
- %4 = linalg.add ins(%3, %arg5 : tensor<256x256xf32>, tensor<256x256xf32>) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
- scf.yield %3, %4 : tensor<256x256xf32>, tensor<256x256xf32>
- }
- return %2#0, %2#1 : tensor<256x256xf32>, tensor<256x256xf32>
- }
- }
- module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
- %consumer, %fused_consumer = transform.test.fuse_consumer %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
- transform.yield
- }
- }
-}
-// CHECK: func.func @fuse_consumer_for_multi_use_producer(
-// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<256x512xf32>
-// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<512x256xf32>
-// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<256x256xf32>
-// CHECK: %[[dest0:.*]] = tensor.empty() : tensor<256x256xf32>
-// CHECK: %[[dest1:.*]] = linalg.fill
-// CHECK-SAME: outs(%[[dest0]] :
-// CHECK: %[[LOOP_RESULT1:.*]]:2 = scf.for %[[IV1:.*]] = %[[C0]]
-// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG1:.*]] = %[[dest1]], %[[SECOND_OUT_ARG1:.*]] = %[[ARG2]])
-// CHECK-SAME: {
-// CHECK: %[[LOOP_RESULT2:.*]]:2 = scf.for %[[IV2:.*]] = %[[C0]]
-// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG2:.*]] = %[[FIRST_OUT_ARG1]], %[[SECOND_OUT_ARG2:.*]] = %[[dest0]])
-// CHECK-SAME: {
-// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
-// CHECK: %[[INPUT_SLICE:.*]] = tensor.extract_slice %[[ARG0]][%[[IV1]], 0] [64, 512] [1, 1]
-// CHECK: %[[WEIGHT_SLICE:.*]] = tensor.extract_slice %[[ARG1]][0, %[[IV2]]] [512, 64] [1, 1]
-// CHECK: %[[TILED_MAT_OUT:.*]] = linalg.matmul
-// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
-// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[TILED_MAT_OUT]] into %[[FIRST_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
-// CHECK: %[[ADD_OPERAND2_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG1]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
-// CHECK: %[[ADD_OUT_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
-// CHECK: %[[TILED_ADD_OUT:.*]] = linalg.add
-// CHECK-SAME: ins(%[[TILED_MAT_OUT]], %[[ADD_OPERAND2_SLICE]] :
-// CHECK-SAME: outs(%[[ADD_OUT_SLICE]] :
-// CHECK: %[[INSERT_ADD:.*]] = tensor.insert_slice %[[TILED_ADD_OUT]] into %[[SECOND_OUT_ARG2]][%[[IV1]], %[[IV2]]] [64, 64] [1, 1]
-// CHECK: scf.yield %[[INSERT_MAT]], %[[INSERT_ADD]] :
-// CHECK: }
-// CHECK: scf.yield %[[LOOP_RESULT2]]#0, %[[LOOP_RESULT2]]#1 :
-// CHECK: }
-// CHECK: return %[[LOOP_RESULT1]]#0, %[[LOOP_RESULT1]]#1 :
|
Not needed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Reverts #110105 - it got merged accidentally - hence reverting.