Skip to content

[mlir][linalg] Add a new helper hook: hasVectorizationImpl #110708

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Original file line number Diff line number Diff line change
Expand Up @@ -762,6 +762,14 @@ LogicalResult copyToGPUPrivateMemory(OpBuilder &b, Value src, Value dst);
/// memory is freed when going outside of the scope.
LogicalResult deallocateGPUPrivateMemory(OpBuilder &, Value /*buffer*/);

/// Return true if there's dedicated logic in the Linalg Vectorizer to
/// vectorize this Op, false otherwise.
///
/// Note that this helper merely implements a very high level check and that the
/// vectorizer also requires various additional pre-conditions to be met for it
/// to work (these are checked by the vectorizer itself).
bool hasVectorizationImpl(Operation *);

/// Emit a suitable vector form for an operation. If provided,
/// `inputVectorSizes` are used to vectorize this operation. `inputVectorSizes`
/// must match the rank of the iteration space of the operation and the sizes
Expand Down
13 changes: 6 additions & 7 deletions mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3411,11 +3411,11 @@ struct VectorizationPattern : public RewritePattern {
flatten1DDepthwiseConv(flattenConv) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return rewriter.notifyMatchFailure(op, "expected Linalg Op");
return vectorize(rewriter, linalgOp, /*inputVectorSizes=*/{},
/*scalableVecDims=*/{}, vectorizeNDExtract,
if (!linalg::hasVectorizationImpl(op))
return rewriter.notifyMatchFailure(op,
"Unsupported Op, cannot vectorize");
return vectorize(rewriter, op, /*inputVectorSizes=*/{},
/*inputScalableVecDims=*/{}, vectorizeNDExtract,
flatten1DDepthwiseConv);
}

Expand Down Expand Up @@ -3496,8 +3496,7 @@ DiagnosedSilenceableFailure transform::VectorizeOp::apply(

// TODO: Check that the correct number of vectorSizes was provided.
for (Operation *target : targets) {
if (!isa<linalg::LinalgOp, tensor::PadOp, tensor::PackOp, tensor::UnPackOp>(
target)) {
if (!linalg::hasVectorizationImpl(target)) {
return mlir::emitSilenceableFailure(target->getLoc())
<< "Unsupported Op, cannot vectorize";
}
Expand Down
9 changes: 9 additions & 0 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2092,6 +2092,10 @@ LogicalResult mlir::linalg::vectorizeOpPrecondition(
Operation *op, ArrayRef<int64_t> inputVectorSizes,
ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract,
bool flatten1DDepthwiseConv) {

if (!hasVectorizationImpl(op))
return failure();

if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes,
inputScalableVecDims)))
return failure();
Expand Down Expand Up @@ -2129,6 +2133,11 @@ static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) {
}
}

bool mlir::linalg::hasVectorizationImpl(Operation *op) {
return isa<linalg::LinalgOp, tensor::PadOp, tensor::PackOp, tensor::UnPackOp>(
op);
}

/// Emit a suitable vector form for an operation. If provided,
/// `inputVectorSizes` are used to vectorize this operation.
/// `inputVectorSizes` must match the rank of the iteration space of the
Expand Down
65 changes: 65 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -2010,3 +2010,68 @@ module attributes {transform.with_named_sequence} {
// CHECK: %[[VAL_8:.*]] = vector.transpose %[[VAL_7]], [1, 2, 3, 0] : vector<1x1x12x197xf32> to vector<1x12x197x1xf32>
// CHECK: %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_3]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]] {in_bounds = [true, true, true, true]} : vector<1x12x197x1xf32>, tensor<1x12x197x1xf32>
// CHECK: return %[[VAL_9]] : tensor<1x12x197x1xf32>

// -----

// Input identical as the test in vectorization.mlir. Output is different -
// vector sizes are inferred (rather than user-specified) and hence _no_
// masking was used.

func.func @test_vectorize_pack(%arg0: tensor<32x8x16xf32>, %arg1: tensor<4x1x32x16x2xf32>) -> tensor<4x1x32x16x2xf32> {
%pack = tensor.pack %arg0 outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x8x16xf32> -> tensor<4x1x32x16x2xf32>
return %pack : tensor<4x1x32x16x2xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
transform.yield
}
}

// CHECK-LABEL: func.func @test_vectorize_pack(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32x8x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<4x1x32x16x2xf32>) -> tensor<4x1x32x16x2xf32> {
// CHECK: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_3]], %[[VAL_3]], %[[VAL_3]]], %[[VAL_2]] {in_bounds = [true, true, true]} : tensor<32x8x16xf32>, vector<32x8x16xf32>
// CHECK: %[[VAL_5:.*]] = vector.shape_cast %[[VAL_4]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
// CHECK: %[[VAL_6:.*]] = vector.transpose %[[VAL_5]], [1, 3, 0, 4, 2] : vector<32x4x2x1x16xf32> to vector<4x1x32x16x2xf32>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<4x1x32x16x2xf32>
// CHECK: %[[VAL_8:.*]] = vector.transfer_write %[[VAL_6]], %[[VAL_7]]{{\[}}%[[VAL_3]], %[[VAL_3]], %[[VAL_3]], %[[VAL_3]], %[[VAL_3]]] {in_bounds = [true, true, true, true, true]} : vector<4x1x32x16x2xf32>, tensor<4x1x32x16x2xf32>
// CHECK: return %[[VAL_8]] : tensor<4x1x32x16x2xf32>

// -----

// Input identical as the test in vectorization.mlir. Output is different -
// vector sizes are inferred (rather than user-specified) and hence _no_
// masking was used.

func.func @test_vectorize_padded_pack(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
%pad = arith.constant 0.000000e+00 : f32
%pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32>
return %pack : tensor<32x4x1x16x2xf32>
}

// CHECK-LABEL: func.func @test_vectorize_padded_pack(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32x7x15xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
// CHECK: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_3]], %[[VAL_3]], %[[VAL_3]]], %[[VAL_2]] {in_bounds = [true, false, false]} : tensor<32x7x15xf32>, vector<32x8x16xf32>
// CHECK: %[[VAL_5:.*]] = vector.shape_cast %[[VAL_4]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
// CHECK: %[[VAL_6:.*]] = vector.transpose %[[VAL_5]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32>
// CHECK: %[[VAL_8:.*]] = vector.transfer_write %[[VAL_6]], %[[VAL_7]]{{\[}}%[[VAL_3]], %[[VAL_3]], %[[VAL_3]], %[[VAL_3]], %[[VAL_3]]] {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
// CHECK: return %[[VAL_8]] : tensor<32x4x1x16x2xf32>

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
8 changes: 8 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -666,6 +666,10 @@ module attributes {transform.with_named_sequence} {

// -----

// Input identical as the test in vectorization-with-patterns.mlir. Output is
// different - vector sizes are inferred (rather than user-specified) and hence
// masking was used.

func.func @test_vectorize_pack(%arg0: tensor<32x8x16xf32>, %arg1: tensor<4x1x32x16x2xf32>) -> tensor<4x1x32x16x2xf32> {
%pack = tensor.pack %arg0 outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x8x16xf32> -> tensor<4x1x32x16x2xf32>
return %pack : tensor<4x1x32x16x2xf32>
Expand All @@ -692,6 +696,10 @@ module attributes {transform.with_named_sequence} {

// -----

// Input identical as the test in vectorization-with-patterns.mlir. Output is
// different - vector sizes are inferred (rather than user-specified) and hence
// masking was used.

func.func @test_vectorize_padded_pack(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
%pad = arith.constant 0.000000e+00 : f32
%pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32>
Expand Down
Loading