-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[MLIR][XeGPU] Update the type of offsets for CreateDescOp and UpdateOffsetOp #110741
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
✅ With the latest revision this PR passed the C/C++ code formatter. |
@llvm/pr-subscribers-mlir-gpu Author: Chao Chen (chencha3) ChangesThis PR changes the type of Patch is 29.88 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/110741.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
index 7ac0cf77fe59bb..d6c51d20571fd3 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
@@ -11,6 +11,7 @@
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/TypeUtilities.h"
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index e24a056de2caf3..239ce0aa8e0035 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -424,9 +424,9 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
It accepts the following parameters:
* source: a 1D memref or pointer (uint64_t) represents the flattened memory object.
- * offsets: a array containing offsets of each access point. Its size
+ * offsets: a vector containing offsets of each access point. Its size
is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
- implying each element in the array corresponds to a work-item (SIMT lane)
+ implying each element in the vector corresponds to a work-item (SIMT lane)
in the subgroup.
The first dimension of the result TensorDesc corresponds to work-items, so it should
@@ -436,56 +436,59 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
```mlir
%a = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %a[0, 16, 32, 64]: memref<1024xf32> -> TensorDesc<4xf32>
+ %0 = arith.constant dense<[0, 16, 32, 64]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %a, %0: memref<1024xf32>, vector<4xindex> -> TensorDesc<4xf32>
```
Example 2. It assumes subgroup size is 4, and each workitem access 8 elements.
It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>
+ %off = arith.constant dense<[0, 16, 32, 64]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %0, %off : memref<1024xf32>, vector<4xindex>
+ -> TensorDesc<4x8xf32, #xegpu.scattered_tdesc_attr<chunk_size = 8>>
```
Example 3. It is similar to Example 2, but there is some overlaps among workitems.
It accesses: a[0:7], a[4:11], a[8:15], a[12:19]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>>
+ %off = arith.constant dense<[0, 4, 8, 12]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %0, %off : memref<1024xf32>, vector<4xindex>
+ -> TensorDesc<4x8xf32, #xegpu.scattered_tdesc_attr<chunk_size = 8>>
```
}];
let arguments = (ins XeGPU_BaseAddrType: $source,
- Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets);
+ XeGPU_OffsetType: $offsets);
let results = (outs XeGPU_TensorDesc:$TensorDesc);
+ let builders = [
+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "mlir::Value": $source,
+ "llvm::ArrayRef<OpFoldResult>": $offsets)>,
+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "mlir::Value": $source,
+ "llvm::ArrayRef<int64_t>": $offsets)>,
+ ];
+
let assemblyFormat = [{
- $source
- custom<DynamicIndexList>($offsets, $const_offsets)
- attr-dict `:` type($source) `->` qualified(type($TensorDesc))
+ $source `,` $offsets attr-dict `:` type($source) `,` type($offsets) `->` qualified(type($TensorDesc))
}];
- let extraClassDeclaration = extraBaseClassDeclaration # [{
+ let extraClassDeclaration = [{
xegpu::TensorDescType getTensorDescType() {
return getTensorDesc().getType();
}
- SmallVector<OpFoldResult> getMixedOffsets() {
- Builder b(getContext());
- return getMixedValues(getConstOffsets(), getOffsets(), b);
+ mlir::VectorType getOffsetsType() {
+ return getOffsets().getType();
}
size_t getNumOffsets() {
- return getMixedOffsets().size();
+ return getOffsetsType().getNumElements();
}
mlir::Value getViewSource() { return getSource(); }
- OpFoldResult getOffset(unsigned idx) {
- assert(idx < getNumOffsets() && "Invalid out of bound access.");
- return getMixedOffsets()[idx];
- }
-
unsigned getSourceMemorySpace() {
auto srcTy = getSource().getType();
if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
@@ -550,7 +553,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
describes the data being loaded at the subgroup level, so its size is
consistent with the number of work-items in a subgroup. When the chunk size
is larger than 2, the output vector is a 2D vector, with dim-1 correspoding
- to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item.
+ to work-items, and dim-0 corresponding to the chunk size loaded by each work-item.
Specially, there is a transpose effect on the result (as compared to the TensorDesc)
due to the hardware implementation. Therefore, a transpose attribute is introduced
on purpose, making sure users are aware of this implicit transformation.
@@ -558,16 +561,25 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
The mask operand masks out memory access so that it is safe to pass out-of-boundary
addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
- Example:
+ Example 1:
```mlir
- %2 = xegpu.load %1, %0 {transpose,
- l1_hint = #xegpu.cache_hint<cached>,
+ %2 = xegpu.load %1, %0 {l1_hint = #xegpu.cache_hint<cached>,
l2_hint = #xegpu.cache_hint<uncached>,
l3_hint = #xegpu.cache_hint<uncached>}
: !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global>>,
vector<16xi1> -> vector<16xf32>
```
+ Example 2:
+ ```mlir
+ %2 = xegpu.load %1, %0 {transpose,
+ l1_hint = #xegpu.cache_hint<cached>,
+ l2_hint = #xegpu.cache_hint<uncached>,
+ l3_hint = #xegpu.cache_hint<uncached>}
+ : !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<memory_space=global, chunk_size=8>>,
+ vector<16xi1> -> vector<8x16xf32>
+ ```
+
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
@@ -610,17 +622,27 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "T
let description = [{ It (aka. store) stores data to scattered memory locations. The value is
typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be
a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes
- and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter`
+ and the dim-0 of the value corresponds to the chunk size stored per lane. So `store_scatter`
has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
introduced on purpose, making sure users are aware of this implicit transformation.
- Example:
+ Example 1:
```mlir
%3 = xegpu.store %0, %1, %2 {l1_hint = #xegpu.cache_hint<uncached>,
l2_hint = #xegpu.cache_hint<write_back>,
l3_hint = #xegpu.cache_hint<write_through>}
- : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true>>, vector<16xi1>
+ : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered_tdesc_attr<>>, vector<16xi1>
+ ```
+
+ Example 2:
+ ```mlir
+ %3 = xegpu.store %0, %1, %2 {transpose,
+ l1_hint = #xegpu.cache_hint<uncached>,
+ l2_hint = #xegpu.cache_hint<write_back>,
+ l3_hint = #xegpu.cache_hint<write_through>}
+ : vector<8x16xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>>, vector<16xi1>
```
+
}];
let arguments = (ins
@@ -666,40 +688,39 @@ def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset",
Example:
```mlir
- %2 = xegpu.update_offset %1, [32, 32, 32, 32]
- : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %off = arith.constant dense<[32, 32, 32, 32]> : vector<4xindex>
+ %2 = xegpu.update_offset %1, %off :
+ !xegpu.tensor_desc<4x2xf32, #xegpu.scattered_tdesc_attr<>>, vector<4xindex>
```
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
- Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets);
+ XeGPU_OffsetType: $offsets);
let results = (outs XeGPU_TensorDesc: $result);
- let extraClassDeclaration = extraBaseClassDeclaration # [{
+ let builders = [
+ OpBuilder<(ins "mlir::Value": $TensorDesc,
+ "llvm::ArrayRef<OpFoldResult>": $offsets)>,
+ OpBuilder<(ins "mlir::Value": $TensorDesc,
+ "llvm::ArrayRef<int64_t>": $offsets)>
+ ];
+
+ let extraClassDeclaration = [{
xegpu::TensorDescType getTensorDescType() {
return getTensorDesc().getType();
}
- SmallVector<OpFoldResult> getMixedOffsets() {
- Builder b(getContext());
- return getMixedValues(getConstOffsets(), getOffsets(), b);
+ mlir::VectorType getOffsetsType() {
+ return getOffsets().getType();
}
size_t getNumOffsets() {
- return getMixedOffsets().size();
- }
-
- OpFoldResult getOffset(unsigned idx) {
- assert(idx < getNumOffsets() && "Invalid out of bound access.");
- return getMixedOffsets()[idx];
+ return getOffsetsType().getNumElements();
}
}];
let assemblyFormat = [{
- $TensorDesc `,`
- custom<DynamicIndexList>($offsets, $const_offsets)
- attr-dict `:` qualified(type($TensorDesc))
+ $TensorDesc `,` $offsets attr-dict `:` qualified(type($TensorDesc)) `,` type($offsets)
}];
}
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 1a7a6b34784099..5bd3c370e38594 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//
+#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/IR/Builders.h"
@@ -308,6 +309,24 @@ LogicalResult UpdateNdOffsetOp::verify() {
// XeGPU_CreateDescOp
//===----------------------------------------------------------------------===//
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+ TensorDescType TensorDesc, Value source,
+ llvm::ArrayRef<OpFoldResult> offsets) {
+ auto loc = source.getLoc();
+ int64_t size = static_cast<int64_t>(offsets.size());
+ auto type = VectorType::get(size, builder.getIndexType());
+ auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
+ auto offset = builder.create<vector::FromElementsOp>(loc, type, values);
+ build(builder, state, TensorDesc, source, offset);
+}
+
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+ TensorDescType TensorDesc, Value source,
+ llvm::ArrayRef<int64_t> offsets) {
+ auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
+ build(builder, state, TensorDesc, source, ofrs);
+}
+
LogicalResult CreateDescOp::verify() {
auto tdescTy = getTensorDescType();
@@ -473,6 +492,29 @@ LogicalResult StoreScatterOp::verify() {
return success();
}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_UpdateOffsetOp
+//===----------------------------------------------------------------------===//
+void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
+ mlir::Value tensorDesc,
+ llvm::ArrayRef<OpFoldResult> offsets) {
+ auto tdescTy = mlir::dyn_cast<TensorDescType>(tensorDesc.getType());
+ assert(tdescTy && "Expecting the source is a TensorDescType value.");
+ auto loc = tensorDesc.getLoc();
+ int64_t size = static_cast<int64_t>(offsets.size());
+ auto type = VectorType::get({size}, builder.getIndexType());
+ auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
+ auto offset = builder.create<vector::FromElementsOp>(loc, type, values);
+ build(builder, state, tdescTy, tensorDesc, offset);
+}
+
+void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
+ Value tensorDesc, llvm::ArrayRef<int64_t> offsets) {
+ auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
+ build(builder, state, tensorDesc, ofrs);
+}
+
//===----------------------------------------------------------------------===//
// XeGPU_DpasOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
index c1126efb6046dc..6db57aad773aa8 100644
--- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
+++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
@@ -104,22 +104,28 @@ gpu.func @test_create_update_nd_tdesc_vc(%src: memref<24x32xf32>) {
// CHECK: gpu.func @test_create_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
gpu.return
}
// CHECK: gpu.func @test_create_tdesc_vc_1(%[[arg0:.*]]: memref<?xf32, 3>) {
gpu.func @test_create_tdesc_vc_1(%src: memref<?xf32, 3>) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
gpu.return
}
// CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_prefetch_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
// CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
gpu.return
@@ -129,8 +135,10 @@ gpu.func @test_prefetch_vc(%src: ui64) {
gpu.func @test_load_gather_vc(%src: ui64) {
//CHECK: %[[cst:.*]] = arith.constant dense<true> : vector<4xi1>
%0 = arith.constant dense<1>: vector<4xi1>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[c2:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %c = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[c2]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %c : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
//CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
//CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1> -> vector<2x4xf32>
%2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
@@ -144,8 +152,10 @@ gpu.func @test_store_scatter_vc(%src: ui64) {
%0 = arith.constant dense<1>: vector<4xi1>
//CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<2x4xf32>
%1 = arith.constant dense<2.9>: vector<2x4xf32>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[c2:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %c = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[c2]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %2 = xegpu.create_tdesc %src, %c : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
//CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
//CHECK-SAME: vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1>
xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
@@ -155,10 +165,14 @@ gpu.func @test_store_scatter_vc(%src: ui64) {
// CHECK: gpu.func @test_create_update_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_update_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24]: ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_td...
[truncated]
|
@llvm/pr-subscribers-mlir Author: Chao Chen (chencha3) ChangesThis PR changes the type of Patch is 29.88 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/110741.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
index 7ac0cf77fe59bb..d6c51d20571fd3 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
@@ -11,6 +11,7 @@
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/TypeUtilities.h"
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index e24a056de2caf3..239ce0aa8e0035 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -424,9 +424,9 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
It accepts the following parameters:
* source: a 1D memref or pointer (uint64_t) represents the flattened memory object.
- * offsets: a array containing offsets of each access point. Its size
+ * offsets: a vector containing offsets of each access point. Its size
is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
- implying each element in the array corresponds to a work-item (SIMT lane)
+ implying each element in the vector corresponds to a work-item (SIMT lane)
in the subgroup.
The first dimension of the result TensorDesc corresponds to work-items, so it should
@@ -436,56 +436,59 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
```mlir
%a = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %a[0, 16, 32, 64]: memref<1024xf32> -> TensorDesc<4xf32>
+ %0 = arith.constant dense<[0, 16, 32, 64]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %a, %0: memref<1024xf32>, vector<4xindex> -> TensorDesc<4xf32>
```
Example 2. It assumes subgroup size is 4, and each workitem access 8 elements.
It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>
+ %off = arith.constant dense<[0, 16, 32, 64]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %0, %off : memref<1024xf32>, vector<4xindex>
+ -> TensorDesc<4x8xf32, #xegpu.scattered_tdesc_attr<chunk_size = 8>>
```
Example 3. It is similar to Example 2, but there is some overlaps among workitems.
It accesses: a[0:7], a[4:11], a[8:15], a[12:19]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>>
+ %off = arith.constant dense<[0, 4, 8, 12]> : vector<4xindex>
+ %1 = xegpu.create_tdesc %0, %off : memref<1024xf32>, vector<4xindex>
+ -> TensorDesc<4x8xf32, #xegpu.scattered_tdesc_attr<chunk_size = 8>>
```
}];
let arguments = (ins XeGPU_BaseAddrType: $source,
- Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets);
+ XeGPU_OffsetType: $offsets);
let results = (outs XeGPU_TensorDesc:$TensorDesc);
+ let builders = [
+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "mlir::Value": $source,
+ "llvm::ArrayRef<OpFoldResult>": $offsets)>,
+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "mlir::Value": $source,
+ "llvm::ArrayRef<int64_t>": $offsets)>,
+ ];
+
let assemblyFormat = [{
- $source
- custom<DynamicIndexList>($offsets, $const_offsets)
- attr-dict `:` type($source) `->` qualified(type($TensorDesc))
+ $source `,` $offsets attr-dict `:` type($source) `,` type($offsets) `->` qualified(type($TensorDesc))
}];
- let extraClassDeclaration = extraBaseClassDeclaration # [{
+ let extraClassDeclaration = [{
xegpu::TensorDescType getTensorDescType() {
return getTensorDesc().getType();
}
- SmallVector<OpFoldResult> getMixedOffsets() {
- Builder b(getContext());
- return getMixedValues(getConstOffsets(), getOffsets(), b);
+ mlir::VectorType getOffsetsType() {
+ return getOffsets().getType();
}
size_t getNumOffsets() {
- return getMixedOffsets().size();
+ return getOffsetsType().getNumElements();
}
mlir::Value getViewSource() { return getSource(); }
- OpFoldResult getOffset(unsigned idx) {
- assert(idx < getNumOffsets() && "Invalid out of bound access.");
- return getMixedOffsets()[idx];
- }
-
unsigned getSourceMemorySpace() {
auto srcTy = getSource().getType();
if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
@@ -550,7 +553,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
describes the data being loaded at the subgroup level, so its size is
consistent with the number of work-items in a subgroup. When the chunk size
is larger than 2, the output vector is a 2D vector, with dim-1 correspoding
- to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item.
+ to work-items, and dim-0 corresponding to the chunk size loaded by each work-item.
Specially, there is a transpose effect on the result (as compared to the TensorDesc)
due to the hardware implementation. Therefore, a transpose attribute is introduced
on purpose, making sure users are aware of this implicit transformation.
@@ -558,16 +561,25 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
The mask operand masks out memory access so that it is safe to pass out-of-boundary
addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
- Example:
+ Example 1:
```mlir
- %2 = xegpu.load %1, %0 {transpose,
- l1_hint = #xegpu.cache_hint<cached>,
+ %2 = xegpu.load %1, %0 {l1_hint = #xegpu.cache_hint<cached>,
l2_hint = #xegpu.cache_hint<uncached>,
l3_hint = #xegpu.cache_hint<uncached>}
: !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global>>,
vector<16xi1> -> vector<16xf32>
```
+ Example 2:
+ ```mlir
+ %2 = xegpu.load %1, %0 {transpose,
+ l1_hint = #xegpu.cache_hint<cached>,
+ l2_hint = #xegpu.cache_hint<uncached>,
+ l3_hint = #xegpu.cache_hint<uncached>}
+ : !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<memory_space=global, chunk_size=8>>,
+ vector<16xi1> -> vector<8x16xf32>
+ ```
+
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
@@ -610,17 +622,27 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "T
let description = [{ It (aka. store) stores data to scattered memory locations. The value is
typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be
a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes
- and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter`
+ and the dim-0 of the value corresponds to the chunk size stored per lane. So `store_scatter`
has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
introduced on purpose, making sure users are aware of this implicit transformation.
- Example:
+ Example 1:
```mlir
%3 = xegpu.store %0, %1, %2 {l1_hint = #xegpu.cache_hint<uncached>,
l2_hint = #xegpu.cache_hint<write_back>,
l3_hint = #xegpu.cache_hint<write_through>}
- : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true>>, vector<16xi1>
+ : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered_tdesc_attr<>>, vector<16xi1>
+ ```
+
+ Example 2:
+ ```mlir
+ %3 = xegpu.store %0, %1, %2 {transpose,
+ l1_hint = #xegpu.cache_hint<uncached>,
+ l2_hint = #xegpu.cache_hint<write_back>,
+ l3_hint = #xegpu.cache_hint<write_through>}
+ : vector<8x16xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>>, vector<16xi1>
```
+
}];
let arguments = (ins
@@ -666,40 +688,39 @@ def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset",
Example:
```mlir
- %2 = xegpu.update_offset %1, [32, 32, 32, 32]
- : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %off = arith.constant dense<[32, 32, 32, 32]> : vector<4xindex>
+ %2 = xegpu.update_offset %1, %off :
+ !xegpu.tensor_desc<4x2xf32, #xegpu.scattered_tdesc_attr<>>, vector<4xindex>
```
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
- Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets);
+ XeGPU_OffsetType: $offsets);
let results = (outs XeGPU_TensorDesc: $result);
- let extraClassDeclaration = extraBaseClassDeclaration # [{
+ let builders = [
+ OpBuilder<(ins "mlir::Value": $TensorDesc,
+ "llvm::ArrayRef<OpFoldResult>": $offsets)>,
+ OpBuilder<(ins "mlir::Value": $TensorDesc,
+ "llvm::ArrayRef<int64_t>": $offsets)>
+ ];
+
+ let extraClassDeclaration = [{
xegpu::TensorDescType getTensorDescType() {
return getTensorDesc().getType();
}
- SmallVector<OpFoldResult> getMixedOffsets() {
- Builder b(getContext());
- return getMixedValues(getConstOffsets(), getOffsets(), b);
+ mlir::VectorType getOffsetsType() {
+ return getOffsets().getType();
}
size_t getNumOffsets() {
- return getMixedOffsets().size();
- }
-
- OpFoldResult getOffset(unsigned idx) {
- assert(idx < getNumOffsets() && "Invalid out of bound access.");
- return getMixedOffsets()[idx];
+ return getOffsetsType().getNumElements();
}
}];
let assemblyFormat = [{
- $TensorDesc `,`
- custom<DynamicIndexList>($offsets, $const_offsets)
- attr-dict `:` qualified(type($TensorDesc))
+ $TensorDesc `,` $offsets attr-dict `:` qualified(type($TensorDesc)) `,` type($offsets)
}];
}
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 1a7a6b34784099..5bd3c370e38594 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//
+#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/IR/Builders.h"
@@ -308,6 +309,24 @@ LogicalResult UpdateNdOffsetOp::verify() {
// XeGPU_CreateDescOp
//===----------------------------------------------------------------------===//
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+ TensorDescType TensorDesc, Value source,
+ llvm::ArrayRef<OpFoldResult> offsets) {
+ auto loc = source.getLoc();
+ int64_t size = static_cast<int64_t>(offsets.size());
+ auto type = VectorType::get(size, builder.getIndexType());
+ auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
+ auto offset = builder.create<vector::FromElementsOp>(loc, type, values);
+ build(builder, state, TensorDesc, source, offset);
+}
+
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+ TensorDescType TensorDesc, Value source,
+ llvm::ArrayRef<int64_t> offsets) {
+ auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
+ build(builder, state, TensorDesc, source, ofrs);
+}
+
LogicalResult CreateDescOp::verify() {
auto tdescTy = getTensorDescType();
@@ -473,6 +492,29 @@ LogicalResult StoreScatterOp::verify() {
return success();
}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_UpdateOffsetOp
+//===----------------------------------------------------------------------===//
+void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
+ mlir::Value tensorDesc,
+ llvm::ArrayRef<OpFoldResult> offsets) {
+ auto tdescTy = mlir::dyn_cast<TensorDescType>(tensorDesc.getType());
+ assert(tdescTy && "Expecting the source is a TensorDescType value.");
+ auto loc = tensorDesc.getLoc();
+ int64_t size = static_cast<int64_t>(offsets.size());
+ auto type = VectorType::get({size}, builder.getIndexType());
+ auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
+ auto offset = builder.create<vector::FromElementsOp>(loc, type, values);
+ build(builder, state, tdescTy, tensorDesc, offset);
+}
+
+void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
+ Value tensorDesc, llvm::ArrayRef<int64_t> offsets) {
+ auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
+ build(builder, state, tensorDesc, ofrs);
+}
+
//===----------------------------------------------------------------------===//
// XeGPU_DpasOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
index c1126efb6046dc..6db57aad773aa8 100644
--- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
+++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
@@ -104,22 +104,28 @@ gpu.func @test_create_update_nd_tdesc_vc(%src: memref<24x32xf32>) {
// CHECK: gpu.func @test_create_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
gpu.return
}
// CHECK: gpu.func @test_create_tdesc_vc_1(%[[arg0:.*]]: memref<?xf32, 3>) {
gpu.func @test_create_tdesc_vc_1(%src: memref<?xf32, 3>) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
gpu.return
}
// CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_prefetch_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
// CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
gpu.return
@@ -129,8 +135,10 @@ gpu.func @test_prefetch_vc(%src: ui64) {
gpu.func @test_load_gather_vc(%src: ui64) {
//CHECK: %[[cst:.*]] = arith.constant dense<true> : vector<4xi1>
%0 = arith.constant dense<1>: vector<4xi1>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[c2:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %c = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[c2]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %1 = xegpu.create_tdesc %src, %c : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
//CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
//CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1> -> vector<2x4xf32>
%2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
@@ -144,8 +152,10 @@ gpu.func @test_store_scatter_vc(%src: ui64) {
%0 = arith.constant dense<1>: vector<4xi1>
//CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<2x4xf32>
%1 = arith.constant dense<2.9>: vector<2x4xf32>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[c2:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ %c = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[c2]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
+ %2 = xegpu.create_tdesc %src, %c : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
//CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
//CHECK-SAME: vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1>
xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
@@ -155,10 +165,14 @@ gpu.func @test_store_scatter_vc(%src: ui64) {
// CHECK: gpu.func @test_create_update_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_update_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24]: ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_td...
[truncated]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good 👍
This aligns XeGPU scattered ops better with how vector.scatter|gather are defined. Profit in my view.
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/138/builds/4517 Here is the relevant piece of the build log for the reference
|
…ffsetOp (llvm#110741) This PR changes the type of `offsets` operand of CreateDescOp and UpdateOffsetOp to 1D Vector of index, for convenience of users.
This PR changes the type of
offsets
operand of CreateDescOp and UpdateOffsetOp to 1D Vector of index, for convenience of users.