Skip to content

[mlir][linalg] Refine test for tensor.pad vectorization #110742

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1091,9 +1091,15 @@ module attributes {transform.with_named_sequence} {
func.func private @make_vector() -> tensor<12x13xf32>

// CHECK-LABEL: func @pad_and_insert_slice_dest
// CHECK-SAME: %[[ARG0:.*]]: tensor<1x5x6xf32>
// Check the insert slice is not rewritten if the padded result is used by the destination operand.
// CHECK-NOT: tensor.pad
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32>
// CHECK: %[[WRITE_1:.*]] = vector.transfer_write %{{.*}}, %[[EMPTY]]{{.*}} : vector<1x12x13xf32>, tensor<1x12x13xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0:.*]]{{.*}} : tensor<1x5x6xf32>, vector<1x5x6xf32>
// CHECK: %[[WRITE_2:.*]] = vector.transfer_write %[[READ]], %[[WRITE_1]]{{.*}} : vector<1x5x6xf32>, tensor<1x12x13xf32>
// CHECK: %[[T1:.*]] = call @make_vector() : () -> tensor<12x13xf32>
// CHECK: = tensor.insert_slice %[[T1]] into
// CHECK: tensor.insert_slice %[[T1]] into %[[WRITE_2]]
func.func @pad_and_insert_slice_dest(
%arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
%c5 = arith.constant 5.0 : f32
Expand All @@ -1110,7 +1116,7 @@ module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%5 = transform.structured.vectorize_children_and_apply_patterns %4 : (!transform.any_op) -> !transform.any_op
%5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
Expand Down
Loading