-
Notifications
You must be signed in to change notification settings - Fork 14.3k
KnownBits: refine high-bits of mul in signed case #113051
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-llvm-support Author: Ramkumar Ramachandra (artagnon) ChangesKnownBits::mul suffers from the deficiency that it doesn't account for signed inputs. Fix it by refining known leading zeros when both inputs are signed, and setting known leading ones when one of the inputs is signed. The strategy we've used is to still use umul_ov, after adjusting for signed inputs, and setting known leading ones from the negation of the result, when it is known to be negative, noting that a possibly-zero result is a special case. -- 8< -- Full diff: https://github.com/llvm/llvm-project/pull/113051.diff 2 Files Affected:
diff --git a/llvm/lib/Support/KnownBits.cpp b/llvm/lib/Support/KnownBits.cpp
index 89668af378070b..b63945f202a34d 100644
--- a/llvm/lib/Support/KnownBits.cpp
+++ b/llvm/lib/Support/KnownBits.cpp
@@ -796,19 +796,26 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
assert((!NoUndefSelfMultiply || LHS == RHS) &&
"Self multiplication knownbits mismatch");
- // Compute the high known-0 bits by multiplying the unsigned max of each side.
- // Conservatively, M active bits * N active bits results in M + N bits in the
- // result. But if we know a value is a power-of-2 for example, then this
- // computes one more leading zero.
- // TODO: This could be generalized to number of sign bits (negative numbers).
- APInt UMaxLHS = LHS.getMaxValue();
- APInt UMaxRHS = RHS.getMaxValue();
-
- // For leading zeros in the result to be valid, the unsigned max product must
+ // Compute the high known-0 or known-1 bits by multiplying the max of each
+ // side. Conservatively, M active bits * N active bits results in M + N bits
+ // in the result. But if we know a value is a power-of-2 for example, then
+ // this computes one more leading zero or one.
+ APInt MaxLHS = LHS.isNegative() ? LHS.getMinValue().abs() : LHS.getMaxValue(),
+ MaxRHS = RHS.isNegative() ? RHS.getMinValue().abs() : RHS.getMaxValue();
+
+ // For leading zeros or ones in the result to be valid, the max product must
// fit in the bitwidth (it must not overflow).
bool HasOverflow;
- APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
- unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero();
+ APInt Result = MaxLHS.umul_ov(MaxRHS, HasOverflow);
+ bool NegResult = LHS.isNegative() ^ RHS.isNegative();
+ unsigned LeadZ = 0, LeadO = 0;
+ if (!HasOverflow) {
+ // Do not set leading ones unless the result is known to be non-zero.
+ if (NegResult && LHS.isNonZero() && RHS.isNonZero())
+ LeadO = (-Result).countLeadingOnes();
+ else if (!NegResult)
+ LeadZ = Result.countLeadingZeros();
+ }
// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
@@ -873,8 +880,9 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
KnownBits Res(BitWidth);
Res.Zero.setHighBits(LeadZ);
+ Res.One.setHighBits(LeadO);
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
- Res.One = BottomKnown.getLoBits(ResultBitsKnown);
+ Res.One |= BottomKnown.getLoBits(ResultBitsKnown);
// If we're self-multiplying then bit[1] is guaranteed to be zero.
if (NoUndefSelfMultiply && BitWidth > 1) {
diff --git a/llvm/test/Analysis/ValueTracking/knownbits-mul.ll b/llvm/test/Analysis/ValueTracking/knownbits-mul.ll
new file mode 100644
index 00000000000000..37526c67f0d9e1
--- /dev/null
+++ b/llvm/test/Analysis/ValueTracking/knownbits-mul.ll
@@ -0,0 +1,143 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
+; RUN: opt < %s -passes=instcombine -S | FileCheck %s
+
+define i8 @mul_low_bits_know(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_know(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_know2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_know2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 2
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_partially_known(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_partially_known(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 2
+; CHECK-NEXT: [[MUL:%.*]] = sub nsw i8 0, [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 2
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %x.notsmin = or i8 %x, 3
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x.notsmin, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_unknown(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_unknown(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 4
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 6
+; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 6
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 -16
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %y.nonzero = or i8 %y, 1
+ %mul = mul i8 %x, %y.nonzero
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know3(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know3(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_unknown(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = and i8 [[XX]], 2
+; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
+; CHECK-NEXT: [[MUL:%.*]] = mul nuw nsw i8 [[X]], [[Y]]
+; CHECK-NEXT: ret i8 [[MUL]]
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 8
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_unknown2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], -2
+; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
+; CHECK-NEXT: [[MUL:%.*]] = mul nsw i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], -16
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+; TODO: This can be reduced to zero.
+define i8 @mul_high_bits_unknown3(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown3(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 28
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 30
+; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 16
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 16
+ ret i8 %r
+}
|
@llvm/pr-subscribers-llvm-analysis Author: Ramkumar Ramachandra (artagnon) ChangesKnownBits::mul suffers from the deficiency that it doesn't account for signed inputs. Fix it by refining known leading zeros when both inputs are signed, and setting known leading ones when one of the inputs is signed. The strategy we've used is to still use umul_ov, after adjusting for signed inputs, and setting known leading ones from the negation of the result, when it is known to be negative, noting that a possibly-zero result is a special case. -- 8< -- Full diff: https://github.com/llvm/llvm-project/pull/113051.diff 2 Files Affected:
diff --git a/llvm/lib/Support/KnownBits.cpp b/llvm/lib/Support/KnownBits.cpp
index 89668af378070b..b63945f202a34d 100644
--- a/llvm/lib/Support/KnownBits.cpp
+++ b/llvm/lib/Support/KnownBits.cpp
@@ -796,19 +796,26 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
assert((!NoUndefSelfMultiply || LHS == RHS) &&
"Self multiplication knownbits mismatch");
- // Compute the high known-0 bits by multiplying the unsigned max of each side.
- // Conservatively, M active bits * N active bits results in M + N bits in the
- // result. But if we know a value is a power-of-2 for example, then this
- // computes one more leading zero.
- // TODO: This could be generalized to number of sign bits (negative numbers).
- APInt UMaxLHS = LHS.getMaxValue();
- APInt UMaxRHS = RHS.getMaxValue();
-
- // For leading zeros in the result to be valid, the unsigned max product must
+ // Compute the high known-0 or known-1 bits by multiplying the max of each
+ // side. Conservatively, M active bits * N active bits results in M + N bits
+ // in the result. But if we know a value is a power-of-2 for example, then
+ // this computes one more leading zero or one.
+ APInt MaxLHS = LHS.isNegative() ? LHS.getMinValue().abs() : LHS.getMaxValue(),
+ MaxRHS = RHS.isNegative() ? RHS.getMinValue().abs() : RHS.getMaxValue();
+
+ // For leading zeros or ones in the result to be valid, the max product must
// fit in the bitwidth (it must not overflow).
bool HasOverflow;
- APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
- unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero();
+ APInt Result = MaxLHS.umul_ov(MaxRHS, HasOverflow);
+ bool NegResult = LHS.isNegative() ^ RHS.isNegative();
+ unsigned LeadZ = 0, LeadO = 0;
+ if (!HasOverflow) {
+ // Do not set leading ones unless the result is known to be non-zero.
+ if (NegResult && LHS.isNonZero() && RHS.isNonZero())
+ LeadO = (-Result).countLeadingOnes();
+ else if (!NegResult)
+ LeadZ = Result.countLeadingZeros();
+ }
// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
@@ -873,8 +880,9 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
KnownBits Res(BitWidth);
Res.Zero.setHighBits(LeadZ);
+ Res.One.setHighBits(LeadO);
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
- Res.One = BottomKnown.getLoBits(ResultBitsKnown);
+ Res.One |= BottomKnown.getLoBits(ResultBitsKnown);
// If we're self-multiplying then bit[1] is guaranteed to be zero.
if (NoUndefSelfMultiply && BitWidth > 1) {
diff --git a/llvm/test/Analysis/ValueTracking/knownbits-mul.ll b/llvm/test/Analysis/ValueTracking/knownbits-mul.ll
new file mode 100644
index 00000000000000..37526c67f0d9e1
--- /dev/null
+++ b/llvm/test/Analysis/ValueTracking/knownbits-mul.ll
@@ -0,0 +1,143 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
+; RUN: opt < %s -passes=instcombine -S | FileCheck %s
+
+define i8 @mul_low_bits_know(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_know(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_know2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_know2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 2
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_partially_known(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_partially_known(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 2
+; CHECK-NEXT: [[MUL:%.*]] = sub nsw i8 0, [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 2
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %x.notsmin = or i8 %x, 3
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x.notsmin, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_low_bits_unknown(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_low_bits_unknown(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 4
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 6
+; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 6
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 6
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 -16
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %y.nonzero = or i8 %y, 1
+ %mul = mul i8 %x, %y.nonzero
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_know3(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_know3(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: ret i8 0
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_unknown(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = and i8 [[XX]], 2
+; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
+; CHECK-NEXT: [[MUL:%.*]] = mul nuw nsw i8 [[X]], [[Y]]
+; CHECK-NEXT: ret i8 [[MUL]]
+;
+ %x = and i8 %xx, 2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 8
+ ret i8 %r
+}
+
+define i8 @mul_high_bits_unknown2(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown2(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], -2
+; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
+; CHECK-NEXT: [[MUL:%.*]] = mul nsw i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], -16
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -2
+ %y = and i8 %yy, 4
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, -16
+ ret i8 %r
+}
+
+; TODO: This can be reduced to zero.
+define i8 @mul_high_bits_unknown3(i8 %xx, i8 %yy) {
+; CHECK-LABEL: define i8 @mul_high_bits_unknown3(
+; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
+; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 28
+; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 30
+; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
+; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 16
+; CHECK-NEXT: ret i8 [[R]]
+;
+ %x = or i8 %xx, -4
+ %y = or i8 %yy, -2
+ %mul = mul i8 %x, %y
+ %r = and i8 %mul, 16
+ ret i8 %r
+}
|
How does this compare to Jay's impl #86671 (comment)? |
My patch makes KnownBits::mul strictly better for the high bits: I don't touch the low bits. Jay's implementation attempts to rewrite mul completely, at the cost of compile time. |
Strictly better than current or jays impl? edit: Im generally in favor of this, but I'm also in favors of jays impl getting in unless the compile time data is really bad. So my feeling is if we are going to update it, we might as well do it will the best impl we can. We already loop through nbits for shifts, so why not for muls. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The implementation looks fine to me. As you say it's strictly better than the status quo.
I'd prefer to put the ad hoc tests in unittests/Support/KnownBitsTest.cpp
since it's a more direct way of testing the KnownBits implementation than going via ValueTracking.
For future work: I suspect that what you have implemented here is not quite optimal for the high bits. We could fix that and extend #113316 to check optimality of high bits as well as low bits.
I'm not sure we'd want to pollute the unit tests with ad-hoc tests: to me, KnownBitsTest.cpp is a collection of disciplined tests that should never fail. We already have several knownbits-*.ll in ValueTracking/test, and I think adding knownbits-mul.ll works in practice, as long as we pre-commit a reduced test, show non-reduction, and show a reduction after the patch.
I also suspect that it's not optimal for high bits: I think we need some logic similar to the low-bits logic later in the function. Will think about a follow-up when I have some free time, if you don't beat me to it first. |
I think looping through bits is unnecessary, as low-bits are already optimal, and we need something like that for high bits: we can work on a follow-up. |
Quick remark: I think this is sub-optimal due to the mul_ov overflowing in many cases. |
There's no question of "pollution". It's the correct place for KnownBits tests. Yes we have tried to make most of the existing tests "disciplined" and exhaustive, but ad hoc tests can go in there too. They also have the advantage that it's much more obvious what cases are being tested - you don't have to craft IR with |
Yeah, I have thought about this a bit more. I suspect that making high bits optimal in all cases is just as hard as making "middle" bits optimal. So we might have to give up on that goal. |
KnownBits::mul suffers from the deficiency that it doesn't account for signed inputs. Fix it by refining known leading zeros when both inputs are signed, and setting known leading ones when one of the inputs is signed. The strategy we've used is to still use umul_ov, after adjusting for signed inputs, and setting known leading ones from the negation of the result, when it is known to be negative, noting that a possibly-zero result is a special case.
I have a question. Can we simply mul_ov with twice the bitwidth to get the optimal result? |
If you multiply with twice the bit width, it will never overflow. |
Did you mean something like this? If you can check that it is okay, I will push it. TEST(KnownBitsTest, MulHighBits) {
unsigned Bits = 8;
SmallVector<std::pair<int, int>, 4> TestPairs = {
{2, 4}, {-2, -4}, {2, -4}, {-2, 4}};
for (auto [K1, K2] : TestPairs) {
KnownBits Known1(Bits), Known2(Bits);
if (K1 > 0) {
Known1.Zero |= ~(K1 | 1);
Known1.One |= 1;
} else {
Known1.One |= K1;
}
if (K2 > 0) {
Known2.Zero |= ~(K2 | 1);
Known2.One |= 1;
} else {
Known2.One |= K2;
}
KnownBits Computed = KnownBits::mul(Known1, Known2);
KnownBits Exact(Bits);
Exact.Zero.setAllBits();
Exact.One.setAllBits();
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
APInt Res = N1 * N2;
Exact.One &= Res;
Exact.Zero &= ~Res;
});
});
APInt Mask = APInt::getHighBitsSet(
Bits, (Exact.Zero | Exact.One).countLeadingOnes());
Exact.Zero &= Mask;
Exact.One &= Mask;
Computed.Zero &= Mask;
Computed.One &= Mask;
EXPECT_TRUE(checkResult("mul", Exact, Computed, {Known1, Known2},
/*CheckOptimality=*/true));
}
} |
Sure that looks good, with a couple of comments to explain what is going on. It is much more general than I was expecting. |
a9edba0
to
901b6e5
Compare
Right. I think I can work on a follow-up doing the mul_ov with twice the bitwidth, and make the high bits exhaustive. Will investigate after this patch lands. |
I thought about it some more, and have come to the same conclusion as you: making high bits optimal is as hard as making the entire mul optimal. |
Right. To explain my thinking, it is easy to make the high bits optimal for a (signed or unsigned) extending multiply where the result is twice the width of the inputs, just based on the range of the inputs. But the high bits of a normal (non-extending) multiply come from somewhere in the middle of an extending multiply's result. |
Gentle ping. An alternative is to directly review #114211. |
For the future, can you please not create separate PRs for test additions and instead include them as a separate commit? Otherwise we cannot test the impact on llvm-opt-benchmark. |
The test addition is included as the first commit in this PR, no? |
Oh right, I got confused here. And I see now that your follow-up PR was already tested in dtcxzyw/llvm-opt-benchmark#1591, and does not seem to provide benefit on real code. |
True, and that came as a very unfortunate surprise, as I spent quite a lot of time on these PRs :( |
APInt UMaxRHS = RHS.getMaxValue(); | ||
|
||
// For leading zeros in the result to be valid, the unsigned max product must | ||
// Compute the high known-0 or known-1 bits by multiplying the max of each |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think you can wrap the whole of this section in if (!LHS.isSignUnknown() && !RHS.isSignUnknown)
. If either sign was unknown then we would not get any useful high-zeros or high-ones info from this calculation. That would resolve my confusion about your use of isNegative
below by making it clear that there is no "unknown sign" case to worry about - both operand are known negative or known positive.
APInt MaxLHS = LHS.isNegative() ? LHS.getMinValue().abs() : LHS.getMaxValue(), | ||
MaxRHS = RHS.isNegative() ? RHS.getMinValue().abs() : RHS.getMaxValue(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you remove the .abs()
calls here and use smul_ov
below instead?
@jayfoad Thanks for the review. However, after some reflection and offline discussion with @nikic, we have decided to close both PRs, since the patches don't have any benefit on real-world code, and just add compile-time. A completely optimal mul might be beneficial from a testing point of view but, as the real-world benchmarks indicate, a purely academic exercise. |
KnownBits::mul suffers from the deficiency that it doesn't account for signed inputs. Fix it by refining known leading zeros when both inputs are signed, and setting known leading ones when one of the inputs is signed. The strategy we've used is to still use umul_ov, after adjusting for signed inputs, and setting known leading ones from the negation of the result, when it is known to be negative, noting that a possibly-zero result is a special case.
-- 8< --
Based on #113050.