Skip to content

[SandboxVectorizer] revert New class to actually collect and manage s… #113231

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -284,33 +284,6 @@ class SeedContainer {
#endif // NDEBUG
};

class SeedCollector {
SeedContainer StoreSeeds;
SeedContainer LoadSeeds;
Context &Ctx;

/// \Returns the number of SeedBundle groups for all seed types.
/// This is to be used for limiting compilation time.
unsigned totalNumSeedGroups() const {
return StoreSeeds.size() + LoadSeeds.size();
}

public:
SeedCollector(BasicBlock *BB, ScalarEvolution &SE);
~SeedCollector();

iterator_range<SeedContainer::iterator> getStoreSeeds() {
return {StoreSeeds.begin(), StoreSeeds.end()};
}
iterator_range<SeedContainer::iterator> getLoadSeeds() {
return {LoadSeeds.begin(), LoadSeeds.end()};
}
#ifndef NDEBUG
void print(raw_ostream &OS) const;
LLVM_DUMP_METHOD void dump() const;
#endif
};

} // namespace llvm::sandboxir

#endif // LLVM_TRANSFORMS_VECTORIZE_SANDBOXVECTORIZER_SEEDCOLLECTOR_H

This file was deleted.

67 changes: 0 additions & 67 deletions llvm/lib/Transforms/Vectorize/SandboxVectorizer/SeedCollector.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,6 @@ namespace llvm::sandboxir {
cl::opt<unsigned> SeedBundleSizeLimit(
"sbvec-seed-bundle-size-limit", cl::init(32), cl::Hidden,
cl::desc("Limit the size of the seed bundle to cap compilation time."));
#define LoadSeedsDef "loads"
#define StoreSeedsDef "stores"
cl::opt<std::string> CollectSeeds(
"sbvec-collect-seeds", cl::init(LoadSeedsDef "," StoreSeedsDef), cl::Hidden,
cl::desc("Collect these seeds. Use empty for none or a comma-separated "
"list of '" LoadSeedsDef "' and '" StoreSeedsDef "'."));
cl::opt<unsigned> SeedGroupsLimit(
"sbvec-seed-groups-limit", cl::init(256), cl::Hidden,
cl::desc("Limit the number of collected seeds groups in a BB to "
"cap compilation time."));

MutableArrayRef<Instruction *> SeedBundle::getSlice(unsigned StartIdx,
unsigned MaxVecRegBits,
Expand Down Expand Up @@ -141,61 +131,4 @@ void SeedContainer::print(raw_ostream &OS) const {
LLVM_DUMP_METHOD void SeedContainer::dump() const { print(dbgs()); }
#endif // NDEBUG

template <typename LoadOrStoreT> static bool isValidMemSeed(LoadOrStoreT *LSI) {
if (LSI->isSimple())
return true;
auto *Ty = Utils::getExpectedType(LSI);
// Omit types that are architecturally unvectorizable
if (Ty->isX86_FP80Ty() || Ty->isPPC_FP128Ty())
return false;
// Omit vector types without compile-time-known lane counts
if (isa<ScalableVectorType>(Ty))
return false;
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return VectorType::isValidElementType(VTy->getElementType());
return VectorType::isValidElementType(Ty);
}

template bool isValidMemSeed<LoadInst>(LoadInst *LSI);
template bool isValidMemSeed<StoreInst>(StoreInst *LSI);

SeedCollector::SeedCollector(BasicBlock *BB, ScalarEvolution &SE)
: StoreSeeds(SE), LoadSeeds(SE), Ctx(BB->getContext()) {
// TODO: Register a callback for updating the Collector data structures upon
// instr removal

bool CollectStores = CollectSeeds.find(StoreSeedsDef) != std::string::npos;
bool CollectLoads = CollectSeeds.find(LoadSeedsDef) != std::string::npos;
if (!CollectStores && !CollectLoads)
return;
// Actually collect the seeds.
for (auto &I : *BB) {
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
if (CollectStores && isValidMemSeed(SI))
StoreSeeds.insert(SI);
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
if (CollectLoads && isValidMemSeed(LI))
LoadSeeds.insert(LI);
// Cap compilation time.
if (totalNumSeedGroups() > SeedGroupsLimit)
break;
}
}

SeedCollector::~SeedCollector() {
// TODO: Unregister the callback for updating the seed datastructures upon
// instr removal
}

#ifndef NDEBUG
void SeedCollector::print(raw_ostream &OS) const {
OS << "=== StoreSeeds ===\n";
StoreSeeds.print(OS);
OS << "=== LoadSeeds ===\n";
LoadSeeds.print(OS);
}

void SeedCollector::dump() const { print(dbgs()); }
#endif

} // namespace llvm::sandboxir
Original file line number Diff line number Diff line change
Expand Up @@ -268,171 +268,3 @@ define void @foo(ptr %ptrA, float %val, ptr %ptrB) {
}
EXPECT_EQ(Cnt, 0u);
}

TEST_F(SeedBundleTest, ConsecutiveStores) {
// Where "Consecutive" means the stores address consecutive locations in
// memory, but not in program order. Check to see that the collector puts them
// in the proper order for vectorization.
parseIR(C, R"IR(
define void @foo(ptr noalias %ptr, float %val) {
bb:
%ptr0 = getelementptr float, ptr %ptr, i32 0
%ptr1 = getelementptr float, ptr %ptr, i32 1
%ptr2 = getelementptr float, ptr %ptr, i32 2
%ptr3 = getelementptr float, ptr %ptr, i32 3
store float %val, ptr %ptr0
store float %val, ptr %ptr2
store float %val, ptr %ptr1
store float %val, ptr %ptr3
ret void
}
)IR");
Function &LLVMF = *M->getFunction("foo");
DominatorTree DT(LLVMF);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
DataLayout DL(M->getDataLayout());
LoopInfo LI(DT);
AssumptionCache AC(LLVMF);
ScalarEvolution SE(LLVMF, TLI, AC, DT, LI);

sandboxir::Context Ctx(C);
auto &F = *Ctx.createFunction(&LLVMF);
auto BB = F.begin();
sandboxir::SeedCollector SC(&*BB, SE);

// Find the stores
auto It = std::next(BB->begin(), 4);
// StX with X as the order by offset in memory
auto *St0 = &*It++;
auto *St2 = &*It++;
auto *St1 = &*It++;
auto *St3 = &*It++;

auto StoreSeedsRange = SC.getStoreSeeds();
auto &SB = *StoreSeedsRange.begin();
// Expect just one vector of store seeds
EXPECT_EQ(range_size(StoreSeedsRange), 1u);
EXPECT_THAT(SB, testing::ElementsAre(St0, St1, St2, St3));
}

TEST_F(SeedBundleTest, StoresWithGaps) {
parseIR(C, R"IR(
define void @foo(ptr noalias %ptr, float %val) {
bb:
%ptr0 = getelementptr float, ptr %ptr, i32 0
%ptr1 = getelementptr float, ptr %ptr, i32 3
%ptr2 = getelementptr float, ptr %ptr, i32 5
%ptr3 = getelementptr float, ptr %ptr, i32 7
store float %val, ptr %ptr0
store float %val, ptr %ptr2
store float %val, ptr %ptr1
store float %val, ptr %ptr3
ret void
}
)IR");
Function &LLVMF = *M->getFunction("foo");
DominatorTree DT(LLVMF);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
DataLayout DL(M->getDataLayout());
LoopInfo LI(DT);
AssumptionCache AC(LLVMF);
ScalarEvolution SE(LLVMF, TLI, AC, DT, LI);

sandboxir::Context Ctx(C);
auto &F = *Ctx.createFunction(&LLVMF);
auto BB = F.begin();
sandboxir::SeedCollector SC(&*BB, SE);

// Find the stores
auto It = std::next(BB->begin(), 4);
// StX with X as the order by offset in memory
auto *St0 = &*It++;
auto *St2 = &*It++;
auto *St1 = &*It++;
auto *St3 = &*It++;

auto StoreSeedsRange = SC.getStoreSeeds();
auto &SB = *StoreSeedsRange.begin();
// Expect just one vector of store seeds
EXPECT_EQ(range_size(StoreSeedsRange), 1u);
EXPECT_THAT(SB, testing::ElementsAre(St0, St1, St2, St3));
}

TEST_F(SeedBundleTest, VectorStores) {
parseIR(C, R"IR(
define void @foo(ptr noalias %ptr, <2 x float> %val) {
bb:
%ptr0 = getelementptr float, ptr %ptr, i32 0
%ptr1 = getelementptr float, ptr %ptr, i32 1
store <2 x float> %val, ptr %ptr1
store <2 x float> %val, ptr %ptr0
ret void
}
)IR");
Function &LLVMF = *M->getFunction("foo");
DominatorTree DT(LLVMF);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
DataLayout DL(M->getDataLayout());
LoopInfo LI(DT);
AssumptionCache AC(LLVMF);
ScalarEvolution SE(LLVMF, TLI, AC, DT, LI);

sandboxir::Context Ctx(C);
auto &F = *Ctx.createFunction(&LLVMF);
auto BB = F.begin();
sandboxir::SeedCollector SC(&*BB, SE);

// Find the stores
auto It = std::next(BB->begin(), 2);
// StX with X as the order by offset in memory
auto *St1 = &*It++;
auto *St0 = &*It++;

auto StoreSeedsRange = SC.getStoreSeeds();
EXPECT_EQ(range_size(StoreSeedsRange), 1u);
auto &SB = *StoreSeedsRange.begin();
EXPECT_THAT(SB, testing::ElementsAre(St0, St1));
}

TEST_F(SeedBundleTest, MixedScalarVectors) {
parseIR(C, R"IR(
define void @foo(ptr noalias %ptr, float %v, <2 x float> %val) {
bb:
%ptr0 = getelementptr float, ptr %ptr, i32 0
%ptr1 = getelementptr float, ptr %ptr, i32 1
%ptr3 = getelementptr float, ptr %ptr, i32 3
store float %v, ptr %ptr0
store float %v, ptr %ptr3
store <2 x float> %val, ptr %ptr1
ret void
}
)IR");
Function &LLVMF = *M->getFunction("foo");
DominatorTree DT(LLVMF);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
DataLayout DL(M->getDataLayout());
LoopInfo LI(DT);
AssumptionCache AC(LLVMF);
ScalarEvolution SE(LLVMF, TLI, AC, DT, LI);

sandboxir::Context Ctx(C);
auto &F = *Ctx.createFunction(&LLVMF);
auto BB = F.begin();
sandboxir::SeedCollector SC(&*BB, SE);

// Find the stores
auto It = std::next(BB->begin(), 3);
// StX with X as the order by offset in memory
auto *St0 = &*It++;
auto *St3 = &*It++;
auto *St1 = &*It++;

auto StoreSeedsRange = SC.getStoreSeeds();
EXPECT_EQ(range_size(StoreSeedsRange), 1u);
auto &SB = *StoreSeedsRange.begin();
EXPECT_THAT(SB, testing::ElementsAre(St0, St1, St3));
}
Loading