Skip to content

KnownBits: generalize high-bits of mul to overflows #114211

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 74 additions & 14 deletions llvm/lib/Support/KnownBits.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -796,19 +796,78 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
assert((!NoUndefSelfMultiply || LHS == RHS) &&
"Self multiplication knownbits mismatch");

// Compute the high known-0 bits by multiplying the unsigned max of each side.
// Conservatively, M active bits * N active bits results in M + N bits in the
// result. But if we know a value is a power-of-2 for example, then this
// computes one more leading zero.
// TODO: This could be generalized to number of sign bits (negative numbers).
APInt UMaxLHS = LHS.getMaxValue();
APInt UMaxRHS = RHS.getMaxValue();

// For leading zeros in the result to be valid, the unsigned max product must
// fit in the bitwidth (it must not overflow).
bool HasOverflow;
APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero();
// Compute the high known-0 or known-1 bits by multiplying the min and max of
// each side.
APInt MaxLHS = LHS.isNegative() ? LHS.getMinValue().abs() : LHS.getMaxValue(),
MaxRHS = RHS.isNegative() ? RHS.getMinValue().abs() : RHS.getMaxValue(),
MinLHS = LHS.isNegative() ? LHS.getMaxValue().abs() : LHS.getMinValue(),
MinRHS = RHS.isNegative() ? RHS.getMaxValue().abs() : RHS.getMinValue();

APInt MaxProduct = MaxLHS * MaxRHS, MinProduct = MinLHS * MinRHS;

if (LHS.isNegative() != RHS.isNegative()) {
// The unsigned-multiplication wrapped MinProduct and MaxProduct can be
// negated to turn them into the corresponding signed-multiplication
// wrapped values.
MinProduct.negate();
MaxProduct.negate();

// MinProduct < MaxProduct is now MaxProduct < MinProduct.
std::swap(MinProduct, MaxProduct);
}

// Unless both MinProduct and MaxProduct are the same sign, there won't be any
// leading zeros or ones in the result. Unless MaxProduct.ugt(MinProduct), it
// is not safe to set any leading zeros or ones.
unsigned LeadZ = 0, LeadO = 0;
if (MinProduct.isNegative() == MaxProduct.isNegative() &&
MaxProduct.ugt(MinProduct)) {
APInt LHSUnknown = (~LHS.Zero & ~LHS.One),
RHSUnknown = (~RHS.Zero & ~RHS.One);

// A product of M active bits * N active bits results in M + N bits in the
// result. If either of the operands is a power of two, the result has one
// less active bit.
auto ProdActiveBits = [](const APInt &A, const APInt &B) {
if (A.isZero() || B.isZero())
return 0u;
return A.getActiveBits() + B.getActiveBits() -
(A.isPowerOf2() || B.isPowerOf2());
};

// We want to compute the number of active bits in the difference between
// the non-wrapped max product and non-wrapped min product, but we want to
// avoid camputing the non-wrapped max/min product.
unsigned ActiveBitsInDiff = BitWidth + 1;
if (LHSUnknown.isZero()) {
ActiveBitsInDiff =
ProdActiveBits(MinLHS.isZero() ? LHSUnknown : MinLHS, RHSUnknown);
} else if (RHSUnknown.isZero()) {
ActiveBitsInDiff =
ProdActiveBits(MinRHS.isZero() ? RHSUnknown : MinRHS, LHSUnknown);
} else if (ProdActiveBits(MinLHS, RHSUnknown) <= BitWidth &&
ProdActiveBits(MinRHS, LHSUnknown) <= BitWidth &&
ProdActiveBits(LHSUnknown, RHSUnknown) <= BitWidth) {
// Slow path, which is seldom taken in practice.
// (MinLHS + LHSUnknown) * (MinRHS + RHSUnknown) - (MinLHS * MinRHS)
// = MinLHS * RHSUnknown + MinRHS * LHSUnknown + LHSUnknown * RHSUnknown.
APInt Res = MinLHS.umul_sat(RHSUnknown)
.uadd_sat(MinRHS.umul_sat(LHSUnknown))
.uadd_sat(LHSUnknown.umul_sat(RHSUnknown));
if (!Res.isMaxValue())
ActiveBitsInDiff = Res.getActiveBits();
}

// We uniformly handle the case where there is no max-overflow, in which
// case the high zeros and ones are computed optimally, and where there is,
// but the result shifts at most by BitWidth, in which case the high zeros
// and ones are not computed optimally.
if (ActiveBitsInDiff <= BitWidth) {
// Set the minimum leading zeros or ones from MaxProduct and MinProduct.
LeadZ = MaxProduct.countLeadingZeros();
LeadO = MinProduct.countLeadingOnes();
}
}

// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
Expand Down Expand Up @@ -873,8 +932,9 @@ KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,

KnownBits Res(BitWidth);
Res.Zero.setHighBits(LeadZ);
Res.One.setHighBits(LeadO);
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
Res.One = BottomKnown.getLoBits(ResultBitsKnown);
Res.One |= BottomKnown.getLoBits(ResultBitsKnown);

// If we're self-multiplying then bit[1] is guaranteed to be zero.
if (NoUndefSelfMultiply && BitWidth > 1) {
Expand Down
143 changes: 143 additions & 0 deletions llvm/test/Analysis/ValueTracking/knownbits-mul.ll
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
; RUN: opt < %s -passes=instcombine -S | FileCheck %s

define i8 @mul_low_bits_know(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_low_bits_know(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: ret i8 0
;
%x = and i8 %xx, 2
%y = and i8 %yy, 4
%mul = mul i8 %x, %y
%r = and i8 %mul, 6
ret i8 %r
}

define i8 @mul_low_bits_know2(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_low_bits_know2(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: ret i8 0
;
%x = or i8 %xx, -2
%y = and i8 %yy, 4
%mul = mul i8 %x, %y
%r = and i8 %mul, 2
ret i8 %r
}

define i8 @mul_low_bits_partially_known(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_low_bits_partially_known(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 2
; CHECK-NEXT: [[MUL:%.*]] = sub nsw i8 0, [[Y]]
; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 2
; CHECK-NEXT: ret i8 [[R]]
;
%x = or i8 %xx, -4
%x.notsmin = or i8 %x, 3
%y = or i8 %yy, -2
%mul = mul i8 %x.notsmin, %y
%r = and i8 %mul, 6
ret i8 %r
}

define i8 @mul_low_bits_unknown(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_low_bits_unknown(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 4
; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 6
; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 6
; CHECK-NEXT: ret i8 [[R]]
;
%x = or i8 %xx, -4
%y = or i8 %yy, -2
%mul = mul i8 %x, %y
%r = and i8 %mul, 6
ret i8 %r
}

define i8 @mul_high_bits_know(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_know(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: ret i8 0
;
%x = and i8 %xx, 2
%y = and i8 %yy, 4
%mul = mul i8 %x, %y
%r = and i8 %mul, 16
ret i8 %r
}

define i8 @mul_high_bits_know2(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_know2(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: ret i8 -16
;
%x = or i8 %xx, -2
%y = and i8 %yy, 4
%y.nonzero = or i8 %y, 1
%mul = mul i8 %x, %y.nonzero
%r = and i8 %mul, -16
ret i8 %r
}

define i8 @mul_high_bits_know3(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_know3(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: ret i8 0
;
%x = or i8 %xx, -4
%y = or i8 %yy, -2
%mul = mul i8 %x, %y
%r = and i8 %mul, -16
ret i8 %r
}

define i8 @mul_high_bits_unknown(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_unknown(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: [[X:%.*]] = and i8 [[XX]], 2
; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
; CHECK-NEXT: [[MUL:%.*]] = mul nuw nsw i8 [[X]], [[Y]]
; CHECK-NEXT: ret i8 [[MUL]]
;
%x = and i8 %xx, 2
%y = and i8 %yy, 4
%mul = mul i8 %x, %y
%r = and i8 %mul, 8
ret i8 %r
}

define i8 @mul_high_bits_unknown2(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_unknown2(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], -2
; CHECK-NEXT: [[Y:%.*]] = and i8 [[YY]], 4
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i8 [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], -16
; CHECK-NEXT: ret i8 [[R]]
;
%x = or i8 %xx, -2
%y = and i8 %yy, 4
%mul = mul i8 %x, %y
%r = and i8 %mul, -16
ret i8 %r
}

; TODO: This can be reduced to zero.
define i8 @mul_high_bits_unknown3(i8 %xx, i8 %yy) {
; CHECK-LABEL: define i8 @mul_high_bits_unknown3(
; CHECK-SAME: i8 [[XX:%.*]], i8 [[YY:%.*]]) {
; CHECK-NEXT: [[X:%.*]] = or i8 [[XX]], 28
; CHECK-NEXT: [[Y:%.*]] = or i8 [[YY]], 30
; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[X]], [[Y]]
; CHECK-NEXT: [[R:%.*]] = and i8 [[MUL]], 16
; CHECK-NEXT: ret i8 [[R]]
;
%x = or i8 %xx, -4
%y = or i8 %yy, -2
%mul = mul i8 %x, %y
%r = and i8 %mul, 16
ret i8 %r
}
Loading
Loading