Skip to content

[mlir][linalg] unfold projected permutation. #114704

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Nov 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@ def LinalgStructuredInterface
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
return getNumParallelLoops() == getNumParallelLoops();
return getNumParallelLoops() == getNumLoops();
}]
>,
InterfaceMethod<
Expand Down
4 changes: 4 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Original file line number Diff line number Diff line change
Expand Up @@ -1786,6 +1786,10 @@ void populateBubbleUpExtractSliceOpPatterns(RewritePatternSet &patterns);
/// linalg.fill(%cst, tensor.extract_slice(%init)).
void populateSwapExtractSliceWithFillPatterns(RewritePatternSet &patterns);

/// Add patterns to make explicit broadcasts and transforms in the
/// input operands of a genericOp.
void populateDecomposeProjectedPermutationPatterns(RewritePatternSet &patterns);

/// Patterns to apply `splitReduction` below.
void populateSplitReductionPattern(
RewritePatternSet &patterns,
Expand Down
1 change: 1 addition & 0 deletions mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
TilingInterfaceImpl.cpp
Transforms.cpp
TransposeConv2D.cpp
DecomposeGenericByUnfoldingPermutation.cpp
Vectorization.cpp
WinogradConv2D.cpp

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
//===- DecomposeGenericByUnfoldingPermutation.cpp -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include <map>
#include <optional>
#include <utility>

using namespace mlir;
using namespace mlir::linalg;

namespace {

/// This pattern decomposes the input operand(s) of a linalg.generic that has
/// a `transpose`, `broadcast`, or a mixture of two, into explicit transpose
/// and broadcast. Having them folded into the linalg.generic is a good
/// optimization but sometimes we may want to unwrap, i.e., `unfold` them as
/// explicit transpose and broadcast. This rewrite pattern helps do it for
/// each input operand. This is useful for instance when trying to recognize
/// named ops.
///
/// The transpose, broadcast, or mixture of both, are expressed in the affine
/// map of the operand. Technically it is essentially `projected permutation`.
///
/// Example
///
/// ```mlir
///
/// #projection = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>
/// #identity = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
/// ...
/// %res = linalg.generic
/// { indexing_maps = [#projection, #identity, #identity],
/// iterator_types = ["parallel", "parallel", "parallel",
/// "parallel", "parallel"]}
/// ins(%x, %y : tensor<7x8x9xf32>, tensor<5x9x7x8x10xf32>)
/// outs(%z : tensor<5x9x7x8x10xf32>) {
/// ^bb0(%in: f32, %in_1: f32, %out: f32):
/// %div = arith.divf %in, %in_1 : f32
/// linalg.yield %div : f32
/// } -> tensor<5x9x7x8x10xf32>
/// ```
///
/// In the above IR operand `%x` map is a projected-permutation. This can be
/// unfolded as:
///
/// ```mlir
/// ...
/// %x_trans = linalg.transpose
/// ins(%x : tensor<7x8x9xf32>)
/// outs(%e1 : tensor<9x7x8xf32>) permutation = [2, 0, 1]
/// ...
/// %x_trans_bc = linalg.broadcast
/// ins(%x_trans : tensor<9x7x8xf32>)
/// outs(%e2 : tensor<5x9x7x8x10xf32>) dimensions = [0, 4]
/// %2 = linalg.div
/// ins(%x_trans_bc, %y :
/// tensor<5x9x7x8x10xf32>, tensor<5x9x7x8x10xf32>)
/// outs(%arg2 : tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32>
///
/// Note that linalg.generic has been 'specialized' to linalg.div.
///
/// To unfold it, it is more optimal to transpose first and then do the
/// broadcast. However, if transpose is done first, the permutation map needs
/// to be expressed in terms of reduced dimension as broadcast hasn't happened
/// yet. Also, the broadcast dimensions in a linalg.generic come from other
/// operands (those not broadcasted along that particular dimension). We work
/// this out by computing the convex-polyhedron shape of the linalg.generic
/// iteration space from shapes of all the operands, both inputs and outputs.
///
struct DecomposeProjectedPermutation : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;

LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override;
};

/// For the given `map`, determine what dimensions are transposed and what
/// dimensions are broadcasted.
/// Returns :
/// transpose-permutation, broadcast-dimensions` (empty if not needed)
///
std::pair<SmallVector<int64_t>, SmallVector<int64_t>>
computeTransposeBroadcast(AffineMap &map) {
assert(map.isProjectedPermutation(false) && "not a projection");

// As the map is a projection it likely operates on a smaller set of
// dimensions as far as the transpose is concerned (rest are broadcast).
int64_t minorSize = map.getNumResults();

SmallVector<int64_t> minorResult;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What does minor mean in this context? Apologies if this is obvoius.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

added comments

for (int64_t i = 0; i < minorSize; ++i) {
auto expr = cast<AffineDimExpr>(map.getResults()[i]);
minorResult.push_back(expr.getPosition());
}

// If dims are not monotonically increasing then transpose is present.
SmallVector<int64_t> sortedResMap(minorResult);
std::sort(sortedResMap.begin(), sortedResMap.end());
bool hasTranspose = !std::equal(minorResult.begin(), minorResult.end(),
sortedResMap.begin(), sortedResMap.end());

// Walk the sorted map result to determine which dimensions are broadcasted.
SmallVector<int64_t> broadcast;
for (int64_t i = 0, j = 0; i < map.getNumInputs(); ++i) {
if (j < minorSize && sortedResMap[j] == i) {
j++;
continue;
}
broadcast.push_back(i);
}

SmallVector<int64_t> permutation;
if (hasTranspose) {
// Consider an operand `x : tensor<7x8x9>` of a genericOp that has
// affine map `affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>`
// `x`s access is both transposed and broadcast. But when specifying
// the `linalg.transpose(x : tensor<7x8x9>)` the dimensions need to be
// specified as `affine_map<(d0,d1,d2) -> (d1, d2, d0)` instead of
// refering to d3, d4. Therefore, re-base the transpose dimensions so
// that they start from d0.
permutation.resize(minorSize);
std::map<int64_t, int64_t> minorMap;
for (int64_t i = 0; i < minorSize; ++i)
minorMap.insert({sortedResMap[i], i});

// Re-map the dimensions.
SmallVector<int64_t> remappedResult(minorSize);
for (int64_t i = 0; i < minorSize; ++i)
remappedResult[i] = minorMap[minorResult[i]];

/// Calculate the permutation for the transpose.
for (unsigned i = 0; i < minorSize; ++i) {
permutation[remappedResult[i]] = i;
}
}
return {permutation, broadcast};
}

LogicalResult DecomposeProjectedPermutation::matchAndRewrite(
GenericOp op, PatternRewriter &rewriter) const {
if (!op.hasPureTensorSemantics() || op.isSingleInputOutput() ||
op.isSingleYieldOp() || !op.isAllParallelLoops())
return failure();

// If the map of an operand is not a `projected permutation` then
// it cannot be decomposed to mere transpose and broadcast.
// The requirement that all maps be `projected permutation` may be
// over-restrictive but since we need to determine shape of the
// iteration space as well, reject if any map violates assumption.
for (auto &opOperand : op->getOpOperands()) {
auto map = op.getMatchingIndexingMap(&opOperand);
if (!map.isProjectedPermutation(false))
return failure();
}

// Decomposing linalg.generic involves creating `tensor.empty`
// which can have dynamic shapes but then we would have to work
// out which operand can supply that runtime-value (tensor.dim).
// Leaving it as a future TODO.
if (llvm::any_of(op->getOpOperands(), [](OpOperand &oper) {
auto opType = cast<RankedTensorType>(oper.get().getType());
return ShapedType::isDynamicShape(opType.getShape());
}))
return failure();

auto outputShape = op.getStaticLoopRanges();

auto loc = op.getLoc();
bool isChanged = false;
SmallVector<Value> newInitValues = op.getDpsInputs();
SmallVector<AffineMap> newMap = op.getIndexingMapsArray();

// Walk over each input operand and unfold if it is transposed, broadcast
// or mix of two via operand's affine-map.
for (int64_t i = 0; i < op.getNumDpsInputs(); ++i) {
auto &map = newMap[i];
auto inputRTType = cast<RankedTensorType>(newInitValues[i].getType());
auto elType = inputRTType.getElementType();

/// Nothing to do if map is already an identity.
if (map.isIdentity())
continue;

auto [permutation, broadcastedDims] = computeTransposeBroadcast(map);

// Does it need transpose?
if (!permutation.empty()) {
/// linalg.transpose permutes the dimensions of input using
/// rule: dim(result, i) = dim(input, permutation[i])
SmallVector<int64_t> transposedShape(map.getNumResults());
for (int64_t i = 0; i < map.getNumResults(); ++i)
transposedShape[i] = inputRTType.getShape()[permutation[i]];

Value emptyTensor =
rewriter.create<tensor::EmptyOp>(loc, transposedShape, elType);

auto transposeOp = rewriter.create<TransposeOp>(loc, newInitValues[i],
emptyTensor, permutation);
newInitValues[i] = transposeOp->getResult(0);
isChanged = true;
}

// Does it require broadcast?
if (!broadcastedDims.empty()) {
assert(broadcastedDims.size() && "should have non size broadcast");
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, outputShape, inputRTType.getElementType());

auto broadcastOp = rewriter.create<linalg::BroadcastOp>(
loc, newInitValues[i], emptyTensor, broadcastedDims);

newInitValues[i] = broadcastOp->getResult(0);
isChanged = true;
}
newMap[i] = rewriter.getMultiDimIdentityMap(map.getNumDims());
}

if (isChanged) {
SmallVector<Value> operands = op->getOperands();
ValueRange operandsRef(operands);

auto newOp = rewriter.create<linalg::GenericOp>(
/*location=*/op.getLoc(),
/*resultTensorTypes=*/op->getResultTypes(),
/*inputs=*/newInitValues,
/*outputs=*/operandsRef.drop_front(op.getNumDpsInputs()),
/*indexingMaps=*/newMap,
/*iteratorTypes=*/op.getIteratorTypesArray());

newOp.getRegion().takeBody(op->getRegion(0));
rewriter.replaceOp(op, newOp->getResults());
}
return success();
}

} // namespace

void mlir::linalg::populateDecomposeProjectedPermutationPatterns(
RewritePatternSet &patterns) {
patterns.insert<DecomposeProjectedPermutation>(patterns.getContext());
}
1 change: 1 addition & 0 deletions mlir/lib/Dialect/Linalg/Transforms/Specialize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -347,6 +347,7 @@ struct LinalgSpecializeGenericOpsPass
void LinalgSpecializeGenericOpsPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
populateLinalgGenericOpsSpecializationPatterns(patterns);
populateDecomposeProjectedPermutationPatterns(patterns);

if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
signalPassFailure();
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
// RUN: mlir-opt %s -split-input-file --linalg-specialize-generic-ops | FileCheck %s

#projection = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>
#identity = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>

func.func @transpose_and_broadcast(%x : tensor<7x8x9xf32>, %y: tensor<5x9x7x8x10xf32>, %z : tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32> {
%res = linalg.generic
{ indexing_maps = [#projection, #identity, #identity], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
ins(%x, %y : tensor<7x8x9xf32>, tensor<5x9x7x8x10xf32>) outs(%z : tensor<5x9x7x8x10xf32>) {
^bb0(%in: f32, %in_1: f32, %out: f32):
%div = arith.divf %in, %in_1 : f32
linalg.yield %div : f32
} -> tensor<5x9x7x8x10xf32>
return %res : tensor<5x9x7x8x10xf32>
}

// CHECK-LABEL: transpose_and_broadcast
// CHECK-SAME: %[[X:.+]]: tensor<7x8x9xf32>, %[[Y:.+]]: tensor<5x9x7x8x10xf32>, %[[Z:.+]]: tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32> {
// CHECK: %[[E0:.+]] = tensor.empty() : tensor<9x7x8xf32>
// CHECK: %[[X_trans:.+]] = linalg.transpose ins(%[[X]] : tensor<7x8x9xf32>) outs(%[[E0]] : tensor<9x7x8xf32>) permutation = [2, 0, 1]
// CHECK: %[[E1:.+]] = tensor.empty() : tensor<5x9x7x8x10xf32>
// CHECK: %[[X_trans_bc:.+]] = linalg.broadcast ins(%[[X_trans]] : tensor<9x7x8xf32>) outs(%[[E1]] : tensor<5x9x7x8x10xf32>) dimensions = [0, 4]
// CHECK: {{.*}} = linalg.div ins(%[[X_trans_bc]], %[[Y]] : tensor<5x9x7x8x10xf32>, tensor<5x9x7x8x10xf32>) outs(%[[Z]] : tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32>
// CHECK-NOT: linalg.generic

// -----

#identity = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#transposed = affine_map<(d0, d1, d2) -> (d2, d0, d1)>

func.func @transpose_only(%x : tensor<32x2x16xf32>, %y: tensor<2x16x32xf32>, %z : tensor<2x16x32xf32>) -> tensor<2x16x32xf32> {
%res = linalg.generic
{ indexing_maps = [#transposed, #identity, #identity], iterator_types = ["parallel", "parallel", "parallel"]}
ins(%x, %y : tensor<32x2x16xf32>, tensor<2x16x32xf32>)
outs(%z : tensor<2x16x32xf32>) {
^bb0(%in: f32, %in_1: f32, %out: f32):
%div = arith.divf %in, %in_1 : f32
linalg.yield %div : f32
} -> tensor<2x16x32xf32>
return %res : tensor<2x16x32xf32>
}

// CHECK-LABEL: transpose_only
// CHECK-SAME: %[[X:.+]]: tensor<32x2x16xf32>, %[[Y:.+]]: tensor<2x16x32xf32>, %[[Z:.+]]: tensor<2x16x32xf32>) -> tensor<2x16x32xf32> {
// CHECK: %[[E0:.+]] = tensor.empty() : tensor<2x16x32xf32>
// CHECK: %[[X_trans:.+]] = linalg.transpose ins(%[[X]] : tensor<32x2x16xf32>) outs(%[[E0]] : tensor<2x16x32xf32>) permutation = [1, 2, 0]
// CHECK: {{.*}} = linalg.div ins(%[[X_trans]], %[[Y]] : tensor<2x16x32xf32>, tensor<2x16x32xf32>) outs(%[[Z]] : tensor<2x16x32xf32>) -> tensor<2x16x32xf32>
// CHECK-NOT: linalg.generic

// -----

#identity = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#broadcast = affine_map<(d0, d1, d2) -> (d0, d2)>
func.func @broadcast_only(%x : tensor<2x16x32xf32>, %y: tensor<2x32xf32>, %z : tensor<2x16x32xf32>) -> tensor<2x16x32xf32> {
%res = linalg.generic
{ indexing_maps = [#identity, #broadcast, #identity], iterator_types = ["parallel", "parallel", "parallel"]}
ins(%x, %y : tensor<2x16x32xf32>, tensor<2x32xf32>)
outs(%z : tensor<2x16x32xf32>) {
^bb0(%in: f32, %in_1: f32, %out: f32):
%div = arith.divf %in, %in_1 : f32
linalg.yield %div : f32
} -> tensor<2x16x32xf32>
return %res : tensor<2x16x32xf32>
}

// CHECK-LABEL: broadcast_only
// CHECK-SAME: %[[X:.+]]: tensor<2x16x32xf32>, %[[Y:.+]]: tensor<2x32xf32>, %[[Z:.+]]: tensor<2x16x32xf32>) -> tensor<2x16x32xf32> {
// CHECK: %[[E0:.+]] = tensor.empty() : tensor<2x16x32xf32>
// CHECK: %[[X_bc:.+]] = linalg.broadcast ins(%[[Y]] : tensor<2x32xf32>) outs(%[[E0]] : tensor<2x16x32xf32>) dimensions = [1]
// CHECK: {{.*}} = linalg.div ins(%[[X]], %[[X_bc]] : tensor<2x16x32xf32>, tensor<2x16x32xf32>) outs(%arg2 : tensor<2x16x32xf32>) -> tensor<2x16x32xf32>
// CHECK-NOT: linalg.generic
Loading