-
Notifications
You must be signed in to change notification settings - Fork 14.4k
[mlir][affine]introducing new symbol rules that the result of a Pure
operation that whose operands are valid symbolic identifiers
#118478
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][affine]introducing new symbol rules that the result of a Pure
operation that whose operands are valid symbolic identifiers
#118478
Conversation
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir-affine Author: lonely eagle (linuxlonelyeagle) ChangesAs title.
The code above is fine.The following code causes problems.The reason is that affine.for does not have
Why do we need to do this?
Here is the result of
Full diff: https://github.com/llvm/llvm-project/pull/118478.diff 4 Files Affected:
diff --git a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
index dceebbfec586c8..cf355515deb63d 100644
--- a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
+++ b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
@@ -8,6 +8,7 @@
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
+#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
@@ -410,6 +411,7 @@ bool mlir::affine::isValidSymbol(Value value) {
/// A value can be used as a symbol for `region` iff it meets one of the
/// following conditions:
/// *) It is a constant.
+/// *) It is a threadId Op.
/// *) It is the result of an affine apply operation with symbol arguments.
/// *) It is a result of the dim op on a memref whose corresponding size is
/// a valid symbol.
@@ -443,6 +445,10 @@ bool mlir::affine::isValidSymbol(Value value, Region *region) {
if (matchPattern(defOp, m_Constant(&operandCst)))
return true;
+ // ThreadId operation is ok.
+ if (isa<gpu::ThreadIdOp>(defOp))
+ return true;
+
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = dyn_cast<AffineApplyOp>(defOp))
return applyOp.isValidSymbol(region);
diff --git a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
index 7f7a01be891e05..9dad5cdb28cbc4 100644
--- a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
+++ b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
@@ -22,4 +22,5 @@ add_mlir_dialect_library(MLIRAffineDialect
MLIRSideEffectInterfaces
MLIRUBDialect
MLIRValueBoundsOpInterface
+ MLIRGPUDialect
)
diff --git a/mlir/test/Dialect/Affine/ops.mlir b/mlir/test/Dialect/Affine/ops.mlir
index c6bfb688db1c1d..5bd556619f3d5a 100644
--- a/mlir/test/Dialect/Affine/ops.mlir
+++ b/mlir/test/Dialect/Affine/ops.mlir
@@ -324,3 +324,39 @@ module attributes {gpu.container_module} {
// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
// CHECK: }
// CHECK: gpu.return
+
+// -----
+
+#map = affine_map<()[s0] -> (s0 mod 32)>
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0] -> (s0 mod 32)>
+
+module {
+ gpu.module @gpu {
+ gpu.func @affine_thread_id(%arg0: memref<?x?xf32>) kernel {
+ %c3 = arith.constant 3 : index
+ %dim = memref.dim %arg0, %c3 : memref<?x?xf32>
+ %c0 = arith.constant 0 : index
+ affine.for %arg3 = %c0 to %dim step 32 {
+ %thread_id_x = gpu.thread_id x
+ %0 = affine.apply #map()[%thread_id_x]
+ %c128 = arith.constant 128 : index
+ affine.for %arg4 = %0 to %c128 step 8 {
+ %c32 = arith.constant 32 : index
+ }
+ }
+ gpu.return
+ }
+ }
+}
+
+// CHECK-LABEL: @affine_thread_id
+// CHECK-SAME: (%[[VAL_0:.*]]: memref<?x?xf32>) kernel {
+// CHECK: %[[VAL_1:.*]] = arith.constant 3 : index
+// CHECK: %[[VAL_2:.*]] = memref.dim %[[VAL_0]], %[[VAL_1]] : memref<?x?xf32>
+// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
+// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
+// CHECK: %[[VAL_5:.*]] = gpu.thread_id x
+// CHECK: %[[VAL_6:.*]] = affine.apply #[[$ATTR_0]](){{\[}}%[[VAL_5]]]
+// CHECK: %[[VAL_7:.*]] = arith.constant 128 : index
+// CHECK: affine.for %[[VAL_8:.*]] = %[[VAL_6]] to %[[VAL_7]] step 8 {
diff --git a/mlir/test/Dialect/GPU/transform-gpu.mlir b/mlir/test/Dialect/GPU/transform-gpu.mlir
index 72572c6a38de12..6018eb40bac2a8 100644
--- a/mlir/test/Dialect/GPU/transform-gpu.mlir
+++ b/mlir/test/Dialect/GPU/transform-gpu.mlir
@@ -43,7 +43,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 128)>
+// CHECK-DAG: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 floordiv 128)>
// CHECK-LABEL: func.func @warpgroup_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -61,7 +61,7 @@ func.func @warpgroup_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C384]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C1]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -95,7 +95,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
+// CHECK-DAG: #map = affine_map<()[s0] -> (s0 floordiv 16)>
// CHECK-LABEL: func.func @warp_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -114,7 +114,7 @@ func.func @warp_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !g
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C32]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C3]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -354,9 +354,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 32) floordiv 128) mod 2)>
-// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<(d0, d1, d2) -> (d2 + ((d0 + d1 * 32) floordiv 128) floordiv 2)>
+// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 32) floordiv 128) mod 2)>
+// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<()[s0, s1, s2] -> (s2 + ((s0 + s1 * 32) floordiv 128) floordiv 2)>
// CHECK-LABEL: func.func @warpgroup_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -376,9 +376,9 @@ func.func @warpgroup_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %st
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]](%[[TIDX]], %[[TIDY]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]]()[%[[TIDX]], %[[TIDY]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C768]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -410,9 +410,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) mod 2)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) floordiv 2)>
+// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) mod 2)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) floordiv 2)>
// CHECK-LABEL: func.func @warp_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -432,9 +432,9 @@ func.func @warp_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -466,12 +466,12 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 18) floordiv 32) mod 3)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1) -> ((((d0 + d1 * 18) floordiv 32) mod 6) floordiv 3)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 18) floordiv 32) mod 3)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1] -> ((((s0 + s1 * 18) floordiv 32) mod 6) floordiv 3)>
-// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<(d0, d1) -> (d0 + d1 * 18)>
-// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) mod 10)>
-// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) floordiv 10)>
+// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<()[s0, s1] -> (s0 + s1 * 18)>
+// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) mod 10)>
+// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) floordiv 10)>
// CHECK-LABEL: func.func @map_multi_level_linear(
func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !gpu.async.token) -> !type {
@@ -504,9 +504,9 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %6, %y[%i, %j] : !type
} { mapping = [#gpu.thread<y>, #gpu.thread<x>]}
- // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[LIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
scf.forall (%i, %j, %k) in (%c3, %c2, %c1) {
@@ -515,8 +515,8 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %8, %y[%i, %j] : !type
} {mapping = [#gpu.warp<linear_dim_0>, #gpu.warp<linear_dim_1>, #gpu.warp<linear_dim_2>] }
- // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[COND:.*]] = arith.cmpi ult, %[[LIN]], %[[C20]] : index
// CHECK: scf.if %[[COND]]
// CHECK: memref.load %{{.*}}[%[[LIDX]]] : memref<32xf32>
@@ -648,7 +648,7 @@ module attributes {transform.with_named_sequence} {
#map1 = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: #[[$MAPB:.*]] = affine_map<(d0) -> (d0 * 128)>
-// CHECK-DAG: #[[$MAPW:.*]] = affine_map<(d0, d1, d2) -> (d2 * 32 + ((d0 + d1 * 4) floordiv 32) * 32)>
+// CHECK-DAG: #[[$MAPW:.*]] = affine_map<()[s0, s1, s2] -> (s2 * 32 + ((s0 + s1 * 4) floordiv 32) * 32)>
// CHECK-LABEL: func.func @simple_fill(
func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
@@ -667,7 +667,7 @@ func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
// CHECK: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-NOT: scf.if
// CHECK: memref.subview %{{.*}}[%[[THX]]]
%1 = affine.apply #map1(%arg2)
|
@llvm/pr-subscribers-mlir Author: lonely eagle (linuxlonelyeagle) ChangesAs title.
The code above is fine.The following code causes problems.The reason is that affine.for does not have
Why do we need to do this?
Here is the result of
Full diff: https://github.com/llvm/llvm-project/pull/118478.diff 4 Files Affected:
diff --git a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
index dceebbfec586c8..cf355515deb63d 100644
--- a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
+++ b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
@@ -8,6 +8,7 @@
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
+#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
@@ -410,6 +411,7 @@ bool mlir::affine::isValidSymbol(Value value) {
/// A value can be used as a symbol for `region` iff it meets one of the
/// following conditions:
/// *) It is a constant.
+/// *) It is a threadId Op.
/// *) It is the result of an affine apply operation with symbol arguments.
/// *) It is a result of the dim op on a memref whose corresponding size is
/// a valid symbol.
@@ -443,6 +445,10 @@ bool mlir::affine::isValidSymbol(Value value, Region *region) {
if (matchPattern(defOp, m_Constant(&operandCst)))
return true;
+ // ThreadId operation is ok.
+ if (isa<gpu::ThreadIdOp>(defOp))
+ return true;
+
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = dyn_cast<AffineApplyOp>(defOp))
return applyOp.isValidSymbol(region);
diff --git a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
index 7f7a01be891e05..9dad5cdb28cbc4 100644
--- a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
+++ b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
@@ -22,4 +22,5 @@ add_mlir_dialect_library(MLIRAffineDialect
MLIRSideEffectInterfaces
MLIRUBDialect
MLIRValueBoundsOpInterface
+ MLIRGPUDialect
)
diff --git a/mlir/test/Dialect/Affine/ops.mlir b/mlir/test/Dialect/Affine/ops.mlir
index c6bfb688db1c1d..5bd556619f3d5a 100644
--- a/mlir/test/Dialect/Affine/ops.mlir
+++ b/mlir/test/Dialect/Affine/ops.mlir
@@ -324,3 +324,39 @@ module attributes {gpu.container_module} {
// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
// CHECK: }
// CHECK: gpu.return
+
+// -----
+
+#map = affine_map<()[s0] -> (s0 mod 32)>
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0] -> (s0 mod 32)>
+
+module {
+ gpu.module @gpu {
+ gpu.func @affine_thread_id(%arg0: memref<?x?xf32>) kernel {
+ %c3 = arith.constant 3 : index
+ %dim = memref.dim %arg0, %c3 : memref<?x?xf32>
+ %c0 = arith.constant 0 : index
+ affine.for %arg3 = %c0 to %dim step 32 {
+ %thread_id_x = gpu.thread_id x
+ %0 = affine.apply #map()[%thread_id_x]
+ %c128 = arith.constant 128 : index
+ affine.for %arg4 = %0 to %c128 step 8 {
+ %c32 = arith.constant 32 : index
+ }
+ }
+ gpu.return
+ }
+ }
+}
+
+// CHECK-LABEL: @affine_thread_id
+// CHECK-SAME: (%[[VAL_0:.*]]: memref<?x?xf32>) kernel {
+// CHECK: %[[VAL_1:.*]] = arith.constant 3 : index
+// CHECK: %[[VAL_2:.*]] = memref.dim %[[VAL_0]], %[[VAL_1]] : memref<?x?xf32>
+// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
+// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
+// CHECK: %[[VAL_5:.*]] = gpu.thread_id x
+// CHECK: %[[VAL_6:.*]] = affine.apply #[[$ATTR_0]](){{\[}}%[[VAL_5]]]
+// CHECK: %[[VAL_7:.*]] = arith.constant 128 : index
+// CHECK: affine.for %[[VAL_8:.*]] = %[[VAL_6]] to %[[VAL_7]] step 8 {
diff --git a/mlir/test/Dialect/GPU/transform-gpu.mlir b/mlir/test/Dialect/GPU/transform-gpu.mlir
index 72572c6a38de12..6018eb40bac2a8 100644
--- a/mlir/test/Dialect/GPU/transform-gpu.mlir
+++ b/mlir/test/Dialect/GPU/transform-gpu.mlir
@@ -43,7 +43,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 128)>
+// CHECK-DAG: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 floordiv 128)>
// CHECK-LABEL: func.func @warpgroup_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -61,7 +61,7 @@ func.func @warpgroup_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C384]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C1]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -95,7 +95,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
+// CHECK-DAG: #map = affine_map<()[s0] -> (s0 floordiv 16)>
// CHECK-LABEL: func.func @warp_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -114,7 +114,7 @@ func.func @warp_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !g
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C32]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C3]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -354,9 +354,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 32) floordiv 128) mod 2)>
-// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<(d0, d1, d2) -> (d2 + ((d0 + d1 * 32) floordiv 128) floordiv 2)>
+// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 32) floordiv 128) mod 2)>
+// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<()[s0, s1, s2] -> (s2 + ((s0 + s1 * 32) floordiv 128) floordiv 2)>
// CHECK-LABEL: func.func @warpgroup_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -376,9 +376,9 @@ func.func @warpgroup_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %st
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]](%[[TIDX]], %[[TIDY]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]]()[%[[TIDX]], %[[TIDY]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C768]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -410,9 +410,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) mod 2)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) floordiv 2)>
+// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) mod 2)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) floordiv 2)>
// CHECK-LABEL: func.func @warp_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -432,9 +432,9 @@ func.func @warp_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -466,12 +466,12 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 18) floordiv 32) mod 3)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1) -> ((((d0 + d1 * 18) floordiv 32) mod 6) floordiv 3)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 18) floordiv 32) mod 3)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1] -> ((((s0 + s1 * 18) floordiv 32) mod 6) floordiv 3)>
-// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<(d0, d1) -> (d0 + d1 * 18)>
-// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) mod 10)>
-// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) floordiv 10)>
+// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<()[s0, s1] -> (s0 + s1 * 18)>
+// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) mod 10)>
+// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) floordiv 10)>
// CHECK-LABEL: func.func @map_multi_level_linear(
func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !gpu.async.token) -> !type {
@@ -504,9 +504,9 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %6, %y[%i, %j] : !type
} { mapping = [#gpu.thread<y>, #gpu.thread<x>]}
- // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[LIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
scf.forall (%i, %j, %k) in (%c3, %c2, %c1) {
@@ -515,8 +515,8 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %8, %y[%i, %j] : !type
} {mapping = [#gpu.warp<linear_dim_0>, #gpu.warp<linear_dim_1>, #gpu.warp<linear_dim_2>] }
- // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[COND:.*]] = arith.cmpi ult, %[[LIN]], %[[C20]] : index
// CHECK: scf.if %[[COND]]
// CHECK: memref.load %{{.*}}[%[[LIDX]]] : memref<32xf32>
@@ -648,7 +648,7 @@ module attributes {transform.with_named_sequence} {
#map1 = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: #[[$MAPB:.*]] = affine_map<(d0) -> (d0 * 128)>
-// CHECK-DAG: #[[$MAPW:.*]] = affine_map<(d0, d1, d2) -> (d2 * 32 + ((d0 + d1 * 4) floordiv 32) * 32)>
+// CHECK-DAG: #[[$MAPW:.*]] = affine_map<()[s0, s1, s2] -> (s2 * 32 + ((s0 + s1 * 4) floordiv 32) * 32)>
// CHECK-LABEL: func.func @simple_fill(
func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
@@ -667,7 +667,7 @@ func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
// CHECK: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-NOT: scf.if
// CHECK: memref.subview %{{.*}}[%[[THX]]]
%1 = affine.apply #map1(%arg2)
|
@llvm/pr-subscribers-mlir-gpu Author: lonely eagle (linuxlonelyeagle) ChangesAs title.
The code above is fine.The following code causes problems.The reason is that affine.for does not have
Why do we need to do this?
Here is the result of
Full diff: https://github.com/llvm/llvm-project/pull/118478.diff 4 Files Affected:
diff --git a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
index dceebbfec586c8..cf355515deb63d 100644
--- a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
+++ b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
@@ -8,6 +8,7 @@
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
+#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
@@ -410,6 +411,7 @@ bool mlir::affine::isValidSymbol(Value value) {
/// A value can be used as a symbol for `region` iff it meets one of the
/// following conditions:
/// *) It is a constant.
+/// *) It is a threadId Op.
/// *) It is the result of an affine apply operation with symbol arguments.
/// *) It is a result of the dim op on a memref whose corresponding size is
/// a valid symbol.
@@ -443,6 +445,10 @@ bool mlir::affine::isValidSymbol(Value value, Region *region) {
if (matchPattern(defOp, m_Constant(&operandCst)))
return true;
+ // ThreadId operation is ok.
+ if (isa<gpu::ThreadIdOp>(defOp))
+ return true;
+
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = dyn_cast<AffineApplyOp>(defOp))
return applyOp.isValidSymbol(region);
diff --git a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
index 7f7a01be891e05..9dad5cdb28cbc4 100644
--- a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
+++ b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
@@ -22,4 +22,5 @@ add_mlir_dialect_library(MLIRAffineDialect
MLIRSideEffectInterfaces
MLIRUBDialect
MLIRValueBoundsOpInterface
+ MLIRGPUDialect
)
diff --git a/mlir/test/Dialect/Affine/ops.mlir b/mlir/test/Dialect/Affine/ops.mlir
index c6bfb688db1c1d..5bd556619f3d5a 100644
--- a/mlir/test/Dialect/Affine/ops.mlir
+++ b/mlir/test/Dialect/Affine/ops.mlir
@@ -324,3 +324,39 @@ module attributes {gpu.container_module} {
// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
// CHECK: }
// CHECK: gpu.return
+
+// -----
+
+#map = affine_map<()[s0] -> (s0 mod 32)>
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0] -> (s0 mod 32)>
+
+module {
+ gpu.module @gpu {
+ gpu.func @affine_thread_id(%arg0: memref<?x?xf32>) kernel {
+ %c3 = arith.constant 3 : index
+ %dim = memref.dim %arg0, %c3 : memref<?x?xf32>
+ %c0 = arith.constant 0 : index
+ affine.for %arg3 = %c0 to %dim step 32 {
+ %thread_id_x = gpu.thread_id x
+ %0 = affine.apply #map()[%thread_id_x]
+ %c128 = arith.constant 128 : index
+ affine.for %arg4 = %0 to %c128 step 8 {
+ %c32 = arith.constant 32 : index
+ }
+ }
+ gpu.return
+ }
+ }
+}
+
+// CHECK-LABEL: @affine_thread_id
+// CHECK-SAME: (%[[VAL_0:.*]]: memref<?x?xf32>) kernel {
+// CHECK: %[[VAL_1:.*]] = arith.constant 3 : index
+// CHECK: %[[VAL_2:.*]] = memref.dim %[[VAL_0]], %[[VAL_1]] : memref<?x?xf32>
+// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
+// CHECK: affine.for %[[VAL_4:.*]] = %[[VAL_3]] to %[[VAL_2]] step 32 {
+// CHECK: %[[VAL_5:.*]] = gpu.thread_id x
+// CHECK: %[[VAL_6:.*]] = affine.apply #[[$ATTR_0]](){{\[}}%[[VAL_5]]]
+// CHECK: %[[VAL_7:.*]] = arith.constant 128 : index
+// CHECK: affine.for %[[VAL_8:.*]] = %[[VAL_6]] to %[[VAL_7]] step 8 {
diff --git a/mlir/test/Dialect/GPU/transform-gpu.mlir b/mlir/test/Dialect/GPU/transform-gpu.mlir
index 72572c6a38de12..6018eb40bac2a8 100644
--- a/mlir/test/Dialect/GPU/transform-gpu.mlir
+++ b/mlir/test/Dialect/GPU/transform-gpu.mlir
@@ -43,7 +43,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 128)>
+// CHECK-DAG: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 floordiv 128)>
// CHECK-LABEL: func.func @warpgroup_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -61,7 +61,7 @@ func.func @warpgroup_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[WG:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C384]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C1]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -95,7 +95,7 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
+// CHECK-DAG: #map = affine_map<()[s0] -> (s0 floordiv 16)>
// CHECK-LABEL: func.func @warp_3d(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -114,7 +114,7 @@ func.func @warp_3d(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !g
// CHECK: gpu.launch
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
-// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]](%[[TIDX]])
+// CHECK-DAG: %[[W:.*]] = affine.apply #[[$MAP]]()[%[[TIDX]]]
// CHECK-DAG: %[[CMPX:.*]] = arith.cmpi ult, %[[TIDX]], %[[C32]] : index
// CHECK-DAG: %[[CMPY:.*]] = arith.cmpi ult, %[[TIDY]], %[[C3]] : index
// CHECK: %[[COND:.*]] = arith.andi %[[CMPX]], %[[CMPY]] : i1
@@ -354,9 +354,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 32) floordiv 128) mod 2)>
-// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<(d0, d1, d2) -> (d2 + ((d0 + d1 * 32) floordiv 128) floordiv 2)>
+// CHECK-DAG: #[[$MAPWGLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWGX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 32) floordiv 128) mod 2)>
+// CHECK-DAG: #[[$MAPWGY:.*]] = affine_map<()[s0, s1, s2] -> (s2 + ((s0 + s1 * 32) floordiv 128) floordiv 2)>
// CHECK-LABEL: func.func @warpgroup_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -376,9 +376,9 @@ func.func @warpgroup_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %st
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]](%[[TIDX]], %[[TIDY]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWGLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWGX]]()[%[[TIDX]], %[[TIDY]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWGY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C768]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -410,9 +410,9 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<(d0, d1, d2) -> (d0 + d1 * 32 + d2 * 256)>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) mod 2)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1, d2) -> ((d1 + d2 * 8 + d0 floordiv 32) floordiv 2)>
+// CHECK-DAG: #[[$MAPWLIN:.*]] = affine_map<()[s0, s1, s2] -> (s0 + s1 * 32 + s2 * 256)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) mod 2)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1, s2] -> ((s1 + s2 * 8 + s0 floordiv 32) floordiv 2)>
// CHECK-LABEL: func.func @warp_linear(
// CHECK-SAME: %[[ARGX:[0-9a-z]+]]: memref<2x32xf32>
@@ -432,9 +432,9 @@ func.func @warp_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream
// CHECK-DAG: %[[TIDX:.*]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.*]] = gpu.thread_id y
// CHECK-DAG: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
-// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK-DAG: %[[WIDLIN:.*]] = affine.apply #[[$MAPWLIN]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
+// CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[WIDLIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
// CHECK: memref.load %[[ARGX]][%[[WIDX]], %[[WIDY]]]
@@ -466,12 +466,12 @@ module attributes {transform.with_named_sequence} {
!type = memref<2 x 32 x f32>
!type1d = memref<32 x f32>
-// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<(d0, d1) -> (((d0 + d1 * 18) floordiv 32) mod 3)>
-// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<(d0, d1) -> ((((d0 + d1 * 18) floordiv 32) mod 6) floordiv 3)>
+// CHECK-DAG: #[[$MAPWX:.*]] = affine_map<()[s0, s1] -> (((s0 + s1 * 18) floordiv 32) mod 3)>
+// CHECK-DAG: #[[$MAPWY:.*]] = affine_map<()[s0, s1] -> ((((s0 + s1 * 18) floordiv 32) mod 6) floordiv 3)>
-// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<(d0, d1) -> (d0 + d1 * 18)>
-// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) mod 10)>
-// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<(d0, d1) -> ((d0 + d1 * 18) floordiv 10)>
+// CHECK-DAG: #[[$MAPLIN:.*]] = affine_map<()[s0, s1] -> (s0 + s1 * 18)>
+// CHECK-DAG: #[[$MAPLX:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) mod 10)>
+// CHECK-DAG: #[[$MAPLY:.*]] = affine_map<()[s0, s1] -> ((s0 + s1 * 18) floordiv 10)>
// CHECK-LABEL: func.func @map_multi_level_linear(
func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f32, %stream : !gpu.async.token) -> !type {
@@ -504,9 +504,9 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %6, %y[%i, %j] : !type
} { mapping = [#gpu.thread<y>, #gpu.thread<x>]}
- // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIN:.*]] = affine.apply #[[$MAPLIN]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDX:.*]] = affine.apply #[[$MAPWX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[WIDY:.*]] = affine.apply #[[$MAPWY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[CMPLIN:.*]] = arith.cmpi ult, %[[LIN]], %[[C192]] : index
// CHECK: scf.if %[[CMPLIN]]
scf.forall (%i, %j, %k) in (%c3, %c2, %c1) {
@@ -515,8 +515,8 @@ func.func @map_multi_level_linear(%x: !type, %y: !type, %t: !type1d, %alpha : f3
memref.store %8, %y[%i, %j] : !type
} {mapping = [#gpu.warp<linear_dim_0>, #gpu.warp<linear_dim_1>, #gpu.warp<linear_dim_2>] }
- // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]](%[[TIDX]], %[[TIDY]])
- // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]](%[[TIDX]], %[[TIDY]])
+ // CHECK-DAG: %[[LIDX:.*]] = affine.apply #[[$MAPLX]]()[%[[TIDX]], %[[TIDY]]]
+ // CHECK-DAG: %[[LIDY:.*]] = affine.apply #[[$MAPLY]]()[%[[TIDX]], %[[TIDY]]]
// CHECK-DAG: %[[COND:.*]] = arith.cmpi ult, %[[LIN]], %[[C20]] : index
// CHECK: scf.if %[[COND]]
// CHECK: memref.load %{{.*}}[%[[LIDX]]] : memref<32xf32>
@@ -648,7 +648,7 @@ module attributes {transform.with_named_sequence} {
#map1 = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: #[[$MAPB:.*]] = affine_map<(d0) -> (d0 * 128)>
-// CHECK-DAG: #[[$MAPW:.*]] = affine_map<(d0, d1, d2) -> (d2 * 32 + ((d0 + d1 * 4) floordiv 32) * 32)>
+// CHECK-DAG: #[[$MAPW:.*]] = affine_map<()[s0, s1, s2] -> (s2 * 32 + ((s0 + s1 * 4) floordiv 32) * 32)>
// CHECK-LABEL: func.func @simple_fill(
func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
@@ -667,7 +667,7 @@ func.func @simple_fill(%arg0: memref<128xf32>) -> memref<128xf32> {
// CHECK: %[[TIDX:.*]] = gpu.thread_id x
// CHECK: %[[TIDY:.*]] = gpu.thread_id y
// CHECK: %[[TIDZ:.*]] = gpu.thread_id z
-// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]](%[[TIDX]], %[[TIDY]], %[[TIDZ]])
+// CHECK: %[[THX:.*]] = affine.apply #[[$MAPW]]()[%[[TIDX]], %[[TIDY]], %[[TIDZ]]]
// CHECK-NOT: scf.if
// CHECK: memref.subview %{{.*}}[%[[THX]]]
%1 = affine.apply #map1(%arg2)
|
Just a fly-by comment as I'm no affine expert. Wouldn't it be sufficient to just define the thread ID outside the loop?
Also, the proposed change seems super specific - it might be fine but if we go this route, would it reasonable to allow any other "special" symbols as well? |
You're right, as I commented above. But I would like to say that assuming a loadOp or storeOp. assuming that the number of threads is not big enough, then a thread needs to access the data multiple times, then it needs to be implemented with a for loop. the position of the threadid should be aligned with the position of the loadOp and storeOp. Assuming the loadOp is in an affine.for, then the threadid I think should also be in an affine.for, which will cause the check to fail. It is indeed possible to mention the threadid in the funcOp, but this would add extra operations, implemented by looking up its parent op through the op matched in the pattern. |
✅ With the latest revision this PR passed the C/C++ code formatter. |
7450b8c
to
52562d0
Compare
Yeah, seconding pulling the thread ID out of the loop and However, - and I think this discussion should be postponed to next year because people are out for holidays - I do agree that a I'm not sure I like the idea of "affine symbol" being the trait name, though I don't have a better one ... if we want to pursue this. |
The discussion being postponed to next year is okay with me. |
Relevant, so far empty, discussion thread: https://discourse.llvm.org/t/make-threadid-op-is-valid-symbol-introduce-affinesymbol-trait/83702/2. I'll give @bondhugula some more time to react, given the season. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you squash your commits and add a proper commit summary and update the title as well? It should be along Introduce AffineSymbol trait and use it for ... gpu.threadid
op.
Extensibility like this appears welcome. Here are a few quick things to think about while on this (some of these may be side-issues/open questions):
E.g. arith.constant satisfies all of the above properties |
52562d0
to
8efb3ff
Compare
Sorry, I don't seem to be able to squash commits very well because it syncs the llvm main branch multiple times. rebase comes up with a lot of other people's commits. but I squashed the recent commits after syncing the llvm main branch code. The |
8e125de
to
ddcec59
Compare
You are right, pure and no side effects should be correct. |
One drive-by comment: affine maps already have "symbols" - they use the AffineDimensionLike, perhaps? |
ddcec59
to
7e5a95b
Compare
Now, thinking more about it, you don't really need the This will cover gpu.thread_id any many other valid use cases without need a new trait/interface. A new trait/interface may still be needed for other cases of interest, but we should do the former first instead of having to ask other external ops to add a new trait when not needed. However, if gpu.thread_id is argued to be not "pure" for some reason, we'll have to think about the trait as proposed in this PR. |
These are symbolic identifiers in affine maps, and thus also referred to as symbols. They are separate from SSA values, which are valid affine symbols. Both are related but not obviously the same since the former are math names and the latter are SSA values. The names are fine I feel - the contexts are different. |
"any index-typed result of a pure operation that has operands that are in turn symbols" (zero operand pure operations generating index will be a trivial case of this),I think it makes sense, but I have a question.Why does the operand of such an Op also need to be a symbol? In fact, I think the current implementation is ok. Although this trait may not be really needed, the impact it causes is within a controllable range.
|
This is key - otherwise, you are generating SSA values that are functions of dimensional values like loop IVs and those are exactly the opposite of symbols. For eg., an |
the thread_id is indeed marked as pure. I roughly understand what you mean above. Let me ask you again about the concepts of Affine dimensions and symbols. In other words, pure Op + symbol operands, the resulting ssa value is also a symbol.pure Op + dimensional operands, the obtained ssa value is dimensional ssa value.So what does pure op + symbol and dimensional ssa value get? |
I have removed the affinesymbol trait. The current implementation adds logic to check if it is Pure and if its operand is a valid symbol.Cc @bondhugula This PR broke some tests, but I think it was the right change and made sense. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is overall looking good now. Mostly minor comments.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
PR title and commit title/summary needs to be updated as well.
b81ed07
to
1b4232c
Compare
1b4232c
to
e8746ac
Compare
Pure
operation that whose operands are valid symbolic identifiers
I modified the tile of this PR, and the commit information was modified during the final merge. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM - thanks.
Please go ahead and merge if you have access. If not, I can do it. The commits will need to be squashed with proper summary. |
It's been an honor to work with you. I'll do the rest of the work.I can merge it.Thank you. @bondhugula |
As title.
Consider the following code:
The code above is fine.The following code causes problems.The reason is that affine.for does not have
AffineScope
.But affine.for should not be able to introduceAffineScope
.Why do we need to do this?
Here is the result of
a separate thread loadOp
(after lower, although there is nomemref.load
in it yet).The importance of having thethreadid
as a legal symbol is demonstrated here, although I could have put the op in the Regon of thefuncOp
, but that would have added an unreasonable amount of complexity.