Skip to content

[flang][cuda] Handle gpu.return in AbstractResult pass #119035

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 74 additions & 49 deletions flang/lib/Optimizer/Transforms/AbstractResult.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,60 @@ class SaveResultOpConversion
}
};

template <typename OpTy>
static mlir::LogicalResult
processReturnLikeOp(OpTy ret, mlir::Value newArg,
mlir::PatternRewriter &rewriter) {
auto loc = ret.getLoc();
rewriter.setInsertionPoint(ret);
mlir::Value resultValue = ret.getOperand(0);
fir::LoadOp resultLoad;
mlir::Value resultStorage;
// Identify result local storage.
if (auto load = resultValue.getDefiningOp<fir::LoadOp>()) {
resultLoad = load;
resultStorage = load.getMemref();
// The result alloca may be behind a fir.declare, if any.
if (auto declare = resultStorage.getDefiningOp<fir::DeclareOp>())
resultStorage = declare.getMemref();
}
// Replace old local storage with new storage argument, unless
// the derived type is C_PTR/C_FUN_PTR, in which case the return
// type is updated to return void* (no new argument is passed).
if (fir::isa_builtin_cptr_type(resultValue.getType())) {
auto module = ret->template getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value cptr = resultValue;
if (resultLoad) {
// Replace whole derived type load by component load.
cptr = resultLoad.getMemref();
rewriter.setInsertionPoint(resultLoad);
}
mlir::Value newResultValue =
fir::factory::genCPtrOrCFunptrValue(builder, loc, cptr);
newResultValue = builder.createConvert(
loc, getVoidPtrType(ret.getContext()), newResultValue);
rewriter.setInsertionPoint(ret);
rewriter.replaceOpWithNewOp<OpTy>(ret, mlir::ValueRange{newResultValue});
} else if (resultStorage) {
resultStorage.replaceAllUsesWith(newArg);
rewriter.replaceOpWithNewOp<OpTy>(ret);
} else {
// The result storage may have been optimized out by a memory to
// register pass, this is possible for fir.box results, or fir.record
// with no length parameters. Simply store the result in the result
// storage. at the return point.
rewriter.create<fir::StoreOp>(loc, resultValue, newArg);
rewriter.replaceOpWithNewOp<OpTy>(ret);
}
// Delete result old local storage if unused.
if (resultStorage)
if (auto alloc = resultStorage.getDefiningOp<fir::AllocaOp>())
if (alloc->use_empty())
rewriter.eraseOp(alloc);
return mlir::success();
}

class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
public:
using OpRewritePattern::OpRewritePattern;
Expand All @@ -242,55 +296,23 @@ class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
llvm::LogicalResult
matchAndRewrite(mlir::func::ReturnOp ret,
mlir::PatternRewriter &rewriter) const override {
auto loc = ret.getLoc();
rewriter.setInsertionPoint(ret);
mlir::Value resultValue = ret.getOperand(0);
fir::LoadOp resultLoad;
mlir::Value resultStorage;
// Identify result local storage.
if (auto load = resultValue.getDefiningOp<fir::LoadOp>()) {
resultLoad = load;
resultStorage = load.getMemref();
// The result alloca may be behind a fir.declare, if any.
if (auto declare = resultStorage.getDefiningOp<fir::DeclareOp>())
resultStorage = declare.getMemref();
}
// Replace old local storage with new storage argument, unless
// the derived type is C_PTR/C_FUN_PTR, in which case the return
// type is updated to return void* (no new argument is passed).
if (fir::isa_builtin_cptr_type(resultValue.getType())) {
auto module = ret->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value cptr = resultValue;
if (resultLoad) {
// Replace whole derived type load by component load.
cptr = resultLoad.getMemref();
rewriter.setInsertionPoint(resultLoad);
}
mlir::Value newResultValue =
fir::factory::genCPtrOrCFunptrValue(builder, loc, cptr);
newResultValue = builder.createConvert(
loc, getVoidPtrType(ret.getContext()), newResultValue);
rewriter.setInsertionPoint(ret);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(
ret, mlir::ValueRange{newResultValue});
} else if (resultStorage) {
resultStorage.replaceAllUsesWith(newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
} else {
// The result storage may have been optimized out by a memory to
// register pass, this is possible for fir.box results, or fir.record
// with no length parameters. Simply store the result in the result
// storage. at the return point.
rewriter.create<fir::StoreOp>(loc, resultValue, newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
}
// Delete result old local storage if unused.
if (resultStorage)
if (auto alloc = resultStorage.getDefiningOp<fir::AllocaOp>())
if (alloc->use_empty())
rewriter.eraseOp(alloc);
return mlir::success();
return processReturnLikeOp(ret, newArg, rewriter);
}

private:
mlir::Value newArg;
};

class GPUReturnOpConversion
: public mlir::OpRewritePattern<mlir::gpu::ReturnOp> {
public:
using OpRewritePattern::OpRewritePattern;
GPUReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
: OpRewritePattern(context), newArg{newArg} {}
llvm::LogicalResult
matchAndRewrite(mlir::gpu::ReturnOp ret,
mlir::PatternRewriter &rewriter) const override {
return processReturnLikeOp(ret, newArg, rewriter);
}

private:
Expand Down Expand Up @@ -373,6 +395,9 @@ class AbstractResultOpt
patterns.insert<ReturnOpConversion>(context, newArg);
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) { return ret.getOperands().empty(); });
patterns.insert<GPUReturnOpConversion>(context, newArg);
target.addDynamicallyLegalOp<mlir::gpu::ReturnOp>(
[](mlir::gpu::ReturnOp ret) { return ret.getOperands().empty(); });
assert(func.getFunctionType() ==
getNewFunctionType(funcTy, shouldBoxResult));
} else {
Expand Down
37 changes: 37 additions & 0 deletions flang/test/Fir/CUDA/cuda-abstract-result.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
// RUN: fir-opt -pass-pipeline='builtin.module(gpu.module(gpu.func(abstract-result)))' %s | FileCheck %s

gpu.module @test {
gpu.func @_QMinterval_mPtest1(%arg0: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg1: !fir.ref<f32>) -> !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}> {
%c1_i32 = arith.constant 1 : i32
%18 = fir.dummy_scope : !fir.dscope
%19 = fir.declare %arg0 dummy_scope %18 {uniq_name = "_QMinterval_mFtest1Ea"} : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.dscope) -> !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
%20 = fir.declare %arg1 dummy_scope %18 {uniq_name = "_QMinterval_mFtest1Eb"} : (!fir.ref<f32>, !fir.dscope) -> !fir.ref<f32>
%21 = fir.alloca !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}> {bindc_name = "c", uniq_name = "_QMinterval_mFtest1Ec"}
%22 = fir.declare %21 {uniq_name = "_QMinterval_mFtest1Ec"} : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>) -> !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
%23 = fir.alloca i32 {bindc_name = "warpsize", uniq_name = "_QMcudadeviceECwarpsize"}
%24 = fir.declare %23 {uniq_name = "_QMcudadeviceECwarpsize"} : (!fir.ref<i32>) -> !fir.ref<i32>
%25 = fir.field_index inf, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
%26 = fir.coordinate_of %19, %25 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
%27 = fir.load %20 : !fir.ref<f32>
%28 = arith.negf %27 fastmath<contract> : f32
%29 = fir.load %26 : !fir.ref<f32>
%30 = fir.call @__fadd_rd(%29, %28) proc_attrs<bind_c> fastmath<contract> : (f32, f32) -> f32
%31 = fir.field_index inf, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
%32 = fir.coordinate_of %22, %31 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
fir.store %30 to %32 : !fir.ref<f32>
%33 = fir.field_index sup, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
%34 = fir.coordinate_of %19, %33 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
%35 = fir.load %20 : !fir.ref<f32>
%36 = arith.negf %35 fastmath<contract> : f32
%37 = fir.load %34 : !fir.ref<f32>
%38 = fir.call @__fadd_ru(%37, %36) proc_attrs<bind_c> fastmath<contract> : (f32, f32) -> f32
%39 = fir.field_index sup, !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
%40 = fir.coordinate_of %22, %39 : (!fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, !fir.field) -> !fir.ref<f32>
fir.store %38 to %40 : !fir.ref<f32>
%41 = fir.load %22 : !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>
gpu.return %41 : !fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>
}
}

// CHECK: gpu.func @_QMinterval_mPtest1(%arg0: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg1: !fir.ref<!fir.type<_QMinterval_mTinterval{inf:f32,sup:f32}>>, %arg2: !fir.ref<f32>) {
// CHECK: gpu.return{{$}}
Loading