Skip to content

[mlir][linalg] Handle reassociationIndices correctly for 0D tensor #121683

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 14 additions & 11 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -600,30 +600,33 @@ static Value createLinalgBodyCalculationForElementwiseOp(
static Value expandRank(PatternRewriter &rewriter, Location loc, Value tensor,
int64_t rank) {
// No need to expand if we are already at the desired rank
auto shapedType = dyn_cast<ShapedType>(tensor.getType());
assert(shapedType && shapedType.hasRank() && "expected a ranked shaped type");
int64_t numExtraDims = rank - shapedType.getRank();
auto tensorType = dyn_cast<RankedTensorType>(tensor.getType());
assert(tensorType && "expected a ranked tensor type");
int64_t tensorRank = tensorType.getRank();
int64_t numExtraDims = rank - tensorRank;
assert(numExtraDims >= 0 && "cannot expand tensor to a lower rank");
if (!numExtraDims)
return tensor;

// Compute reassociation indices
SmallVector<SmallVector<int64_t, 2>> reassociationIndices(
shapedType.getRank());
SmallVector<ReassociationIndices> reassociationIndices(tensorRank);
int64_t index = 0;
for (index = 0; index <= numExtraDims; index++)
reassociationIndices[0].push_back(index);
for (size_t position = 1; position < reassociationIndices.size(); position++)
reassociationIndices[position].push_back(index++);
if (tensorRank != 0) {
for (index = 0; index <= numExtraDims; index++)
reassociationIndices[0].push_back(index);
for (size_t position = 1; position < reassociationIndices.size();
position++)
reassociationIndices[position].push_back(index++);
}

// Compute result type
SmallVector<int64_t> resultShape;
for (index = 0; index < numExtraDims; index++)
resultShape.push_back(1);
for (auto size : shapedType.getShape())
for (auto size : tensorType.getShape())
resultShape.push_back(size);
auto resultType =
RankedTensorType::get(resultShape, shapedType.getElementType());
RankedTensorType::get(resultShape, tensorType.getElementType());

// Emit 'tensor.expand_shape' op
return rewriter.create<tensor::ExpandShapeOp>(loc, resultType, tensor,
Expand Down
23 changes: 23 additions & 0 deletions mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,29 @@ func.func @test_add_0d(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {

// -----

// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, 0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (0, 0)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1) -> (d0, d1)>

// CHECK-LABEL: func.func @test_add_0d_broadcast(
// CHECK-SAME: %[[ARG0:.*]]: tensor<2x1xf32>,
// CHECK-SAME: %[[ARG1:.*]]: tensor<f32>) -> tensor<2x1xf32> {
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[ARG1]] [] output_shape [1, 1] : tensor<f32> into tensor<1x1xf32>
// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<2x1xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]], %[[EXPANDED]] : tensor<2x1xf32>, tensor<1x1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<2x1xf32>) {
// CHECK: ^bb0(%[[IN0:.*]]: f32, %[[IN1:.*]]: f32, %[[OUT:.*]]: f32):
// CHECK: %[[ADD:.*]] = arith.addf %[[IN0]], %[[IN1]] : f32
// CHECK: linalg.yield %[[ADD]] : f32
// CHECK: } -> tensor<2x1xf32>
// CHECK: return %[[RESULT]] : tensor<2x1xf32>
// CHECK: }
func.func @test_add_0d_broadcast(%arg0: tensor<2x1xf32>, %arg1: tensor<f32>) -> tensor<2x1xf32> {
%0 = tosa.add %arg0, %arg1 : (tensor<2x1xf32>, tensor<f32>) -> tensor<2x1xf32>
return %0 : tensor<2x1xf32>
}

// -----

// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_all_dynamic
Expand Down
Loading