Skip to content

[mlir]linalg][NFC]-Add lit test for tile and fuse transformation #126216

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 11, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -676,3 +676,65 @@ module attributes {transform.with_named_sequence} {
// CHECK: }
// CHECK: %[[RES_SLICE:.+]] = tensor.insert_slice
// CHECK: return %[[LOOP_RESULT]]#1, %[[RES_SLICE]]

// -----

#map = affine_map<(d0, d1, d2) -> (d0, d1)>
#map1 = affine_map<(d0, d1, d2) -> (d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
module {
func.func @fuse_with_tilable_consumer_with_projected_permutations(%arg0: tensor<256x256xf32>, %arg1: tensor<256x256xf32>, %arg2: tensor<24xf32>) -> tensor<256x256x24xf32> {
%c0 = arith.constant 0 : index
%c64 = arith.constant 64 : index
%c256 = arith.constant 256 : index
%0 = tensor.empty() : tensor<256x256xf32>
%1 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %0) -> (tensor<256x256xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_0 = tensor.extract_slice %arg0[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_1 = tensor.extract_slice %arg1[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%4 = linalg.add ins(%extracted_slice_0, %extracted_slice_1 : tensor<64x256xf32>, tensor<64x256xf32>) outs(%extracted_slice : tensor<64x256xf32>) -> tensor<64x256xf32>
%inserted_slice = tensor.insert_slice %4 into %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<64x256xf32> into tensor<256x256xf32>
scf.yield %inserted_slice : tensor<256x256xf32>
}
%2 = tensor.empty() : tensor<256x256x24xf32>
%3 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1, %arg2 : tensor<256x256xf32>, tensor<24xf32>) outs(%2 : tensor<256x256x24xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%4 = arith.addf %in, %in_0 : f32
linalg.yield %4 : f32
} -> tensor<256x256x24xf32>
return %3 : tensor<256x256x24xf32>
}
}

// CHECK: func.func @fuse_with_tilable_consumer_with_projected_permutations(%[[VAL_0:.*]]: tensor<256x256xf32>, %[[VAL_1:.*]]: tensor<256x256xf32>, %[[VAL_2:.*]]: tensor<24xf32>) -> tensor<256x256x24xf32> {
// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = arith.constant 64 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 256 : index
// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<256x256xf32>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<256x256x24xf32>
// CHECK: %[[VAL_8:.*]]:2 = scf.for %[[VAL_9:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] iter_args(%[[VAL_10:.*]] = %[[VAL_6]], %[[VAL_11:.*]] = %[[VAL_7]]) -> (tensor<256x256xf32>, tensor<256x256x24xf32>) {
// CHECK: %[[VAL_12:.*]] = tensor.extract_slice %[[VAL_10]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_13:.*]] = tensor.extract_slice %[[VAL_0]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_14:.*]] = tensor.extract_slice %[[VAL_1]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_15:.*]] = linalg.add ins(%[[VAL_13]], %[[VAL_14]] : tensor<64x256xf32>, tensor<64x256xf32>) outs(%[[VAL_12]] : tensor<64x256xf32>) -> tensor<64x256xf32>
// CHECK: %[[VAL_16:.*]] = tensor.insert_slice %[[VAL_15]] into %[[VAL_10]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_17:.*]] = tensor.extract_slice %[[VAL_2]][0] [24] [1] : tensor<24xf32> to tensor<24xf32>
// CHECK: %[[VAL_18:.*]] = tensor.extract_slice %[[VAL_11]]{{\[}}%[[VAL_9]], 0, 0] [64, 256, 24] [1, 1, 1]
// CHECK: %[[VAL_19:.*]] = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[VAL_15]], %[[VAL_17]] : tensor<64x256xf32>, tensor<24xf32>) outs(%[[VAL_18]] : tensor<64x256x24xf32>) {
// CHECK: ^bb0(%[[VAL_20:.*]]: f32, %[[VAL_21:.*]]: f32, %[[VAL_22:.*]]: f32):
// CHECK: %[[VAL_23:.*]] = arith.addf %[[VAL_20]], %[[VAL_21]] : f32
// CHECK: linalg.yield %[[VAL_23]] : f32
// CHECK: } -> tensor<64x256x24xf32>
// CHECK: %[[VAL_24:.*]] = tensor.insert_slice %[[VAL_25:.*]] into %[[VAL_11]]{{\[}}%[[VAL_9]], 0, 0] [64, 256, 24] [1, 1, 1]
// CHECK: scf.yield %[[VAL_16]], %[[VAL_24]] : tensor<256x256xf32>, tensor<256x256x24xf32>
// CHECK: }

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op num_consumer_to_fuse = 1
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}