Skip to content

[mlir][math] powf(a, b) drop support when a < 0 #126338

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Feb 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 62 additions & 30 deletions mlir/lib/Dialect/Math/Transforms/ExpandPatterns.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/APFloat.h"

using namespace mlir;

Expand Down Expand Up @@ -311,40 +312,71 @@ static LogicalResult convertFPowIOp(math::FPowIOp op,
return success();
}

// Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
// Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
// Some special cases where b is constant are handled separately:
// when b == 0, or |b| == 0.5, 1.0, or 2.0.
static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value operandA = op.getOperand(0);
Value operandB = op.getOperand(1);
Type opType = operandA.getType();
Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter);
Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA);
Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two);

Value logA = b.create<math::LogOp>(opType, opASquared);
Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA);
Value expResult = b.create<math::ExpOp>(opType, mult);
Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne);
Value remainder = b.create<arith::RemFOp>(opType, operandB, two);
Value negCheck =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero);
Value oddPower =
b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero);
Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck);

// First, we select between the exp value and the adjusted value for odd
// powers of negatives. Then, we ensure that one is produced if `b` is zero.
// This corresponds to `libm` behavior, even for `0^0`. Without this check,
// `exp(0 * ln(0)) = exp(0 *-inf) = exp(-nan) = -nan`.
Value zeroCheck =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, operandB, zero);
Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult,
expResult);
res = b.create<arith::SelectOp>(op->getLoc(), zeroCheck, one, res);
rewriter.replaceOp(op, res);
auto typeA = operandA.getType();
auto typeB = operandB.getType();

auto &sem =
cast<mlir::FloatType>(getElementTypeOrSelf(typeB)).getFloatSemantics();
APFloat valueB(sem);
Comment on lines +325 to +327
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not pretty sure, but do we really need to get the semantics? I feel that the matcher already does the work for you.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

https://github.com/ita9naiwa/llvm-project/blob/d5ee522a217359264d35516a5b506149b5d1ab68/mlir/lib/Dialect/Math/Transforms/ExpandPatterns.cpp#L286-L288
other parts the same file explicitly use sem so I followed. It would work without it, should we remove?

if (matchPattern(operandB, m_ConstantFloat(&valueB))) {
if (valueB.isZero()) {
// a^0 -> 1
Value one = createFloatConst(op->getLoc(), typeA, 1.0, rewriter);
rewriter.replaceOp(op, one);
return success();
}
if (valueB.isExactlyValue(1.0)) {
// a^1 -> a
rewriter.replaceOp(op, operandA);
return success();
}
if (valueB.isExactlyValue(-1.0)) {
// a^(-1) -> 1 / a
Value one = createFloatConst(op->getLoc(), typeA, 1.0, rewriter);
Value div = b.create<arith::DivFOp>(one, operandA);
rewriter.replaceOp(op, div);
return success();
}
if (valueB.isExactlyValue(0.5)) {
// a^(1/2) -> sqrt(a)
Value sqrt = b.create<math::SqrtOp>(operandA);
rewriter.replaceOp(op, sqrt);
return success();
}
if (valueB.isExactlyValue(-0.5)) {
// a^(-1/2) -> 1 / sqrt(a)
Value rsqrt = b.create<math::RsqrtOp>(operandA);
rewriter.replaceOp(op, rsqrt);
return success();
}
if (valueB.isExactlyValue(2.0)) {
// a^2 -> a * a
Value mul = b.create<arith::MulFOp>(operandA, operandA);
rewriter.replaceOp(op, mul);
return success();
}
if (valueB.isExactlyValue(-2.0)) {
// a^(-2) -> 1 / (a * a)
Value mul = b.create<arith::MulFOp>(operandA, operandA);
Value one =
createFloatConst(op->getLoc(), operandA.getType(), 1.0, rewriter);
Value div = b.create<arith::DivFOp>(one, mul);
rewriter.replaceOp(op, div);
return success();
}
}

Value logA = b.create<math::LogOp>(operandA);
Value mult = b.create<arith::MulFOp>(operandB, logA);
Value expResult = b.create<math::ExpOp>(mult);
rewriter.replaceOp(op, expResult);
return success();
}

Expand Down
145 changes: 88 additions & 57 deletions mlir/test/Dialect/Math/expand-math.mlir
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

At least we need all the special cases are tested in this file.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

my apology for that tihs PR got verbose, I made appropriate tests and runs well!!

Original file line number Diff line number Diff line change
Expand Up @@ -201,26 +201,86 @@ func.func @roundf_func(%a: f32) -> f32 {
// -----

// CHECK-LABEL: func @powf_func
// CHECK-SAME: ([[ARG0:%.+]]: f64, [[ARG1:%.+]]: f64)
func.func @powf_func(%a: f64, %b: f64) ->f64 {
// CHECK-DAG: [[CST0:%.+]] = arith.constant 0.000000e+00
// CHECK-DAG: [[CST1:%.+]] = arith.constant 1.0
// CHECK-DAG: [[TWO:%.+]] = arith.constant 2.000000e+00
// CHECK-DAG: [[NEGONE:%.+]] = arith.constant -1.000000e+00
// CHECK-DAG: [[SQR:%.+]] = arith.mulf [[ARG0]], [[ARG0]]
// CHECK-DAG: [[HALF:%.+]] = arith.divf [[ARG1]], [[TWO]]
// CHECK-DAG: [[LOG:%.+]] = math.log [[SQR]]
// CHECK-DAG: [[MULT:%.+]] = arith.mulf [[HALF]], [[LOG]]
// CHECK-DAG: [[EXPR:%.+]] = math.exp [[MULT]]
// CHECK-DAG: [[NEGEXPR:%.+]] = arith.mulf [[EXPR]], [[NEGONE]]
// CHECK-DAG: [[REMF:%.+]] = arith.remf [[ARG1]], [[TWO]]
// CHECK-DAG: [[CMPNEG:%.+]] = arith.cmpf olt, [[ARG0]]
// CHECK-DAG: [[CMPZERO:%.+]] = arith.cmpf one, [[REMF]]
// CHECK-DAG: [[AND:%.+]] = arith.andi [[CMPZERO]], [[CMPNEG]]
// CHECK-DAG: [[CMPZERO:%.+]] = arith.cmpf oeq, [[ARG1]], [[CST0]]
// CHECK-DAG: [[SEL:%.+]] = arith.select [[AND]], [[NEGEXPR]], [[EXPR]]
// CHECK-DAG: [[SEL1:%.+]] = arith.select [[CMPZERO]], [[CST1]], [[SEL]]
// CHECK: return [[SEL1]]
// CHECK-SAME: (%[[ARG0:.+]]: f64, %[[ARG1:.+]]: f64) -> f64
func.func @powf_func(%a: f64, %b: f64) -> f64 {
// CHECK: %[[LOGA:.+]] = math.log %[[ARG0]] : f64
// CHECK: %[[MUL:.+]] = arith.mulf %[[ARG1]], %[[LOGA]] : f64
// CHECK: %[[EXP:.+]] = math.exp %[[MUL]] : f64
// CHECK: return %[[EXP]] : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_zero
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_zero(%a: f64) -> f64{
// CHECK: %[[ONE:.+]] = arith.constant 1.000000e+00 : f64
// CHECK: return %[[ONE]] : f64
%b = arith.constant 0.0 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_one
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_one(%a: f64) -> f64{
// CHECK: return %[[ARG0]] : f64
%b = arith.constant 1.0 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_negone
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_negone(%a: f64) -> f64{
// CHECK: %[[CSTONE:.+]] = arith.constant 1.000000e+00 : f64
// CHECK: %[[DIV:.+]] = arith.divf %[[CSTONE]], %[[ARG0]] : f64
// CHECK: return %[[DIV]] : f64
%b = arith.constant -1.0 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_half
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_half(%a: f64) -> f64{
// CHECK: %[[SQRT:.+]] = math.sqrt %[[ARG0]] : f64
// CHECK: return %[[SQRT]] : f64
%b = arith.constant 0.5 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_neghalf
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_neghalf(%a: f64) -> f64{
// CHECK: %[[CSTONE:.+]] = arith.constant 1.000000e+00 : f64
// CHECK: %[[SQRT:.+]] = math.sqrt %[[ARG0]] : f64
// CHECK: %[[DIV:.+]] = arith.divf %[[CSTONE]], %[[SQRT]] : f64
// CHECK: return %[[DIV]] : f64
%b = arith.constant -0.5 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_two
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_two(%a: f64) -> f64{
// CHECK: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG0]] : f64
// CHECK: return %[[MUL]] : f64
%b = arith.constant 2.0 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}

// CHECK-LABEL: func @powf_func_negtwo
// CHECK-SAME: (%[[ARG0:.+]]: f64) -> f64
func.func @powf_func_negtwo(%a: f64) -> f64{
// CHECK-DAG: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG0]] : f64
// CHECK-DAG: %[[CSTONE:.+]] = arith.constant 1.000000e+00 : f64
// CHECK: %[[DIV:.+]] = arith.divf %[[CSTONE]], %[[MUL]] : f64
// CHECK: return %[[DIV]] : f64
%b = arith.constant -2.0 : f64
%ret = math.powf %a, %b : f64
return %ret : f64
}
Expand Down Expand Up @@ -602,26 +662,11 @@ func.func @math_fpowi_to_powf_tensor(%0 : tensor<8xf32>, %1: tensor<8xi32>) -> t
return %2 : tensor<8xf32>
}
// CHECK-SAME: (%[[ARG0:.*]]: tensor<8xf32>, %[[ARG1:.*]]: tensor<8xi32>) -> tensor<8xf32> {
// CHECK-DAG: %[[CSTNEG1:.*]] = arith.constant dense<-1.000000e+00> : tensor<8xf32>
// CHECK-DAG: %[[CST2:.*]] = arith.constant dense<2.000000e+00> : tensor<8xf32>
// CHECK-DAG: %[[CST0:.*]] = arith.constant dense<0.000000e+00> : tensor<8xf32>
// CHECK-DAG: %[[CST1:.+]] = arith.constant dense<1.000000e+00> : tensor<8xf32>
// CHECK: %[[TOFP:.*]] = arith.sitofp %[[ARG1]] : tensor<8xi32> to tensor<8xf32>
// CHECK: %[[SQ:.*]] = arith.mulf %[[ARG0]], %[[ARG0]] : tensor<8xf32>
// CHECK: %[[DIV:.*]] = arith.divf %[[TOFP]], %[[CST2]] : tensor<8xf32>
// CHECK: %[[LG:.*]] = math.log %[[SQ]] : tensor<8xf32>
// CHECK: %[[MUL:.*]] = arith.mulf %[[DIV]], %[[LG]] : tensor<8xf32>
// CHECK: %[[EXP:.*]] = math.exp %[[MUL]] : tensor<8xf32>
// CHECK: %[[MUL1:.*]] = arith.mulf %[[EXP]], %[[CSTNEG1]] : tensor<8xf32>
// CHECK: %[[REM:.*]] = arith.remf %[[TOFP]], %[[CST2]] : tensor<8xf32>
// CHECK: %[[CMPF:.*]] = arith.cmpf olt, %[[ARG0]], %[[CST0]] : tensor<8xf32>
// CHECK: %[[CMPF1:.*]] = arith.cmpf one, %[[REM]], %[[CST0]] : tensor<8xf32>
// CHECK: %[[AND:.*]] = arith.andi %[[CMPF1]], %[[CMPF]] : tensor<8xi1>
// CHECK: %[[CMPZERO:.*]] = arith.cmpf oeq, %[[TOFP]], %[[CST0]]
// CHECK: %[[SEL:.*]] = arith.select %[[AND]], %[[MUL1]], %[[EXP]] : tensor<8xi1>, tensor<8xf32>
// CHECK: %[[SEL1:.+]] = arith.select %[[CMPZERO]], %[[CST1]], %[[SEL]]
// CHECK: return %[[SEL1]] : tensor<8xf32>

// CHECK: %[[TOFP:.*]] = arith.sitofp %[[ARG1]] : tensor<8xi32> to tensor<8xf32>
// CHECK: %[[LOGA:.*]] = math.log %[[ARG0]] : tensor<8xf32>
// CHECK: %[[MUL:.*]] = arith.mulf %[[TOFP]], %[[LOGA]] : tensor<8xf32>
// CHECK: %[[EXP:.*]] = math.exp %[[MUL]] : tensor<8xf32>
// CHECK: return %[[EXP]]
// -----

// CHECK-LABEL: func.func @math_fpowi_to_powf_scalar
Expand All @@ -630,25 +675,11 @@ func.func @math_fpowi_to_powf_scalar(%0 : f32, %1: i64) -> f32 {
return %2 : f32
}
// CHECK-SAME: (%[[ARG0:.*]]: f32, %[[ARG1:.*]]: i64) -> f32 {
// CHECK-DAG: %[[CSTNEG1:.*]] = arith.constant -1.000000e+00 : f32
// CHECK-DAG: %[[CST2:.*]] = arith.constant 2.000000e+00 : f32
// CHECK-DAG: %[[CST0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[CST1:.+]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[TOFP:.*]] = arith.sitofp %[[ARG1]] : i64 to f32
// CHECK: %[[SQ:.*]] = arith.mulf %[[ARG0]], %[[ARG0]] : f32
// CHECK: %[[DIV:.*]] = arith.divf %[[TOFP]], %[[CST2]] : f32
// CHECK: %[[LG:.*]] = math.log %[[SQ]] : f32
// CHECK: %[[MUL:.*]] = arith.mulf %[[DIV]], %[[LG]] : f32
// CHECK: %[[LOGA:.*]] = math.log %[[ARG0]] : f32
// CHECK: %[[MUL:.*]] = arith.mulf %[[TOFP]], %[[LOGA]] : f32
// CHECK: %[[EXP:.*]] = math.exp %[[MUL]] : f32
// CHECK: %[[MUL1:.*]] = arith.mulf %[[EXP]], %[[CSTNEG1]] : f32
// CHECK: %[[REM:.*]] = arith.remf %[[TOFP]], %[[CST2]] : f32
// CHECK: %[[CMPF:.*]] = arith.cmpf olt, %[[ARG0]], %[[CST0]] : f32
// CHECK: %[[CMPF1:.*]] = arith.cmpf one, %[[REM]], %[[CST0]] : f32
// CHECK: %[[AND:.*]] = arith.andi %[[CMPF1]], %[[CMPF]] : i1
// CHECK: %[[CMPZERO:.*]] = arith.cmpf oeq, %[[TOFP]], %[[CST0]]
// CHECK: %[[SEL:.*]] = arith.select %[[AND]], %[[MUL1]], %[[EXP]] : f32
// CHECK: %[[SEL1:.+]] = arith.select %[[CMPZERO]], %[[CST1]], %[[SEL]]
// CHECK: return %[[SEL1]] : f32
// CHECK: return %[[EXP]] : f32

// -----

Expand Down
69 changes: 38 additions & 31 deletions mlir/test/mlir-runner/test-expand-math-approx.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -202,55 +202,62 @@ func.func @powf() {
%a_p = arith.constant 2.0 : f64
call @func_powff64(%a, %a_p) : (f64, f64) -> ()

// CHECK-NEXT: -27
%b = arith.constant -3.0 : f64
%b_p = arith.constant 3.0 : f64
call @func_powff64(%b, %b_p) : (f64, f64) -> ()

// CHECK-NEXT: 2.343
%c = arith.constant 2.343 : f64
%c_p = arith.constant 1.000 : f64
call @func_powff64(%c, %c_p) : (f64, f64) -> ()
%b = arith.constant 2.343 : f64
%b_p = arith.constant 1.000 : f64
call @func_powff64(%b, %b_p) : (f64, f64) -> ()

// CHECK-NEXT: 0.176171
%d = arith.constant 4.25 : f64
%d_p = arith.constant -1.2 : f64
call @func_powff64(%d, %d_p) : (f64, f64) -> ()
%c = arith.constant 4.25 : f64
%c_p = arith.constant -1.2 : f64
call @func_powff64(%c, %c_p) : (f64, f64) -> ()

// CHECK-NEXT: 1
%e = arith.constant 4.385 : f64
%e_p = arith.constant 0.00 : f64
call @func_powff64(%e, %e_p) : (f64, f64) -> ()
%d = arith.constant 4.385 : f64
%d_p = arith.constant 0.00 : f64
call @func_powff64(%d, %d_p) : (f64, f64) -> ()

// CHECK-NEXT: 6.62637
%f = arith.constant 4.835 : f64
%f_p = arith.constant 1.2 : f64
call @func_powff64(%f, %f_p) : (f64, f64) -> ()
%e = arith.constant 4.835 : f64
%e_p = arith.constant 1.2 : f64
call @func_powff64(%e, %e_p) : (f64, f64) -> ()

// CHECK-NEXT: nan
%i = arith.constant 1.0 : f64
%h = arith.constant 0x7fffffffffffffff : f64
call @func_powff64(%i, %h) : (f64, f64) -> ()
%f = arith.constant 1.0 : f64
%f_p = arith.constant 0x7fffffffffffffff : f64
call @func_powff64(%f, %f_p) : (f64, f64) -> ()

// CHECK-NEXT: inf
%j = arith.constant 29385.0 : f64
%j_p = arith.constant 23598.0 : f64
call @func_powff64(%j, %j_p) : (f64, f64) -> ()
%g = arith.constant 29385.0 : f64
%g_p = arith.constant 23598.0 : f64
call @func_powff64(%g, %g_p) : (f64, f64) -> ()

// CHECK-NEXT: -nan
%k = arith.constant 1.0 : f64
%k_p = arith.constant 0xfff0000001000000 : f64
call @func_powff64(%k, %k_p) : (f64, f64) -> ()
%h = arith.constant 1.0 : f64
%h_p = arith.constant 0xfff0000001000000 : f64
call @func_powff64(%h, %h_p) : (f64, f64) -> ()

// CHECK-NEXT: -nan
%l = arith.constant 1.0 : f32
%l_p = arith.constant 0xffffffff : f32
call @func_powff32(%l, %l_p) : (f32, f32) -> ()
%i = arith.constant 1.0 : f32
%i_p = arith.constant 0xffffffff : f32
call @func_powff32(%i, %i_p) : (f32, f32) -> ()

// CHECK-NEXT: 1
%zero = arith.constant 0.0 : f32
call @func_powff32(%zero, %zero) : (f32, f32) -> ()
%j = arith.constant 0.000 : f32
%j_r = math.powf %j, %j : f32
vector.print %j_r : f32

// CHECK-NEXT: 4
%k = arith.constant -2.0 : f32
%k_p = arith.constant 2.0 : f32
%k_r = math.powf %k, %k_p : f32
vector.print %k_r : f32

// CHECK-NEXT: 0.25
%l = arith.constant -2.0 : f32
%l_p = arith.constant -2.0 : f32
%l_r = math.powf %k, %l_p : f32
vector.print %l_r : f32
return
}

Expand Down