Skip to content

[mlir][linalg][elementwise] Fold transpose into new elementwise #130207

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -601,7 +601,18 @@ def ElementwiseOp : LinalgStructuredBase_Op<"elementwise", [
[{
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, ElementwiseOp::getRegionBuilder());
}]>
}]>,

OpBuilder<(ins "ValueRange":$inputs, "ValueRange":$outputs,
"ElementwiseKindAttr":$kind,
"ArrayAttr":$indexingMaps,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
$_state.addAttribute("kind", kind);
$_state.addAttribute("indexing_maps", indexingMaps);
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, ElementwiseOp::getRegionBuilder());
}]>
];

let hasCustomAssemblyFormat = 1;
Expand Down
5 changes: 5 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Passes.td
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,11 @@ def LinalgSpecializeGenericOpsPass : Pass<"linalg-specialize-generic-ops"> {
let dependentDialects = ["linalg::LinalgDialect"];
}

def LinalgFoldIntoElementwisePass : Pass<"linalg-fold-into-elementwise"> {
let summary = "Fold transform, broadcast and other ops into elementwise";
let dependentDialects = ["linalg::LinalgDialect"];
}

def LinalgDetensorizePass : InterfacePass<"linalg-detensorize", "FunctionOpInterface"> {
let summary = "Detensorize linalg ops";
let dependentDialects = [];
Expand Down
4 changes: 4 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Original file line number Diff line number Diff line change
Expand Up @@ -1710,6 +1710,10 @@ void populateLinalgNamedOpsGeneralizationPatterns(RewritePatternSet &patterns);
void populateLinalgGenericOpsSpecializationPatterns(
RewritePatternSet &patterns);

/// Populates `patterns` with patterns that fold operations like
/// `linalg.transform` into elementwise op map.
void populateLinalgFoldIntoElementwisePatterns(RewritePatternSet &patterns);

/// Linalg decompose convolutions patterns

/// Populates patterns to decompose high-D convolution ops into low-D ones.
Expand Down
1 change: 1 addition & 0 deletions mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
EliminateEmptyTensors.cpp
EraseUnusedOperandsAndResults.cpp
FoldAddIntoDest.cpp
FoldIntoElementwise.cpp
FusePadOpWithLinalgProducer.cpp
Fusion.cpp
Generalization.cpp
Expand Down
89 changes: 89 additions & 0 deletions mlir/lib/Dialect/Linalg/Transforms/FoldIntoElementwise.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
//===- FoldIntoElementwise.cpp - Fold Ops into elementwise if possible ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements folding ops such as transpose and broadcast into the
// affine maps of the elementwise op.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"

namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDINTOELEMENTWISEPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

#define DEBUG_TYPE "linalg-fold-into-elementwise"

namespace {
struct FoldTransposePattern : public OpRewritePattern<ElementwiseOp> {
using OpRewritePattern<ElementwiseOp>::OpRewritePattern;

LogicalResult matchAndRewrite(ElementwiseOp op,
PatternRewriter &rewriter) const override {
bool changed = false;
SmallVector<Value> newIns;
SmallVector<AffineMap> newMaps;
for (OpOperand *operand : op.getDpsInputOperands()) {
AffineMap map = op.getMatchingIndexingMap(operand);
auto transposeOp = operand->get().getDefiningOp<TransposeOp>();

if (!map.isIdentity() || !transposeOp) {
// push in original operand and its map.
newIns.push_back(operand->get());
newMaps.push_back(map);
continue;
}
newIns.push_back(transposeOp.getInput());
// push in transposeOp's inverse permutation map.
newMaps.push_back(transposeOp.getMatchingIndexingMap(
transposeOp.getDpsInputOperand(0)));
changed = true;
}
if (!changed)
return failure();
newMaps.push_back(op.getIndexingMapsArray().back());

rewriter.replaceOpWithNewOp<ElementwiseOp>(
op, newIns, op.getDpsInits()[0], op.getKindAttr(),
rewriter.getAffineMapArrayAttr(newMaps));
return success();
}
};

struct LinalgFoldIntoElementwisePass
: public impl::LinalgFoldIntoElementwisePassBase<
LinalgFoldIntoElementwisePass> {
using impl::LinalgFoldIntoElementwisePassBase<
LinalgFoldIntoElementwisePass>::LinalgFoldIntoElementwisePassBase;

void runOnOperation() override {
llvm::outs() << "Hellow from fold into elemenwise \n";
Operation *op = getOperation();
RewritePatternSet patterns(op->getContext());
populateLinalgFoldIntoElementwisePatterns(patterns);

if (failed(applyPatternsGreedily(op, std::move(patterns))))
return signalPassFailure();
}
};
} // namespace

void mlir::linalg::populateLinalgFoldIntoElementwisePatterns(
RewritePatternSet &patterns) {
patterns.add<FoldTransposePattern>(patterns.getContext());
}
43 changes: 43 additions & 0 deletions mlir/test/Dialect/Linalg/elementwise/fold.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
// RUN: mlir-opt %s -linalg-fold-into-elementwise -split-input-file | FileCheck %s

// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
//
// CHECK: func.func @unary_transpose(%[[A:.+]]: tensor<16x8x32xf32>, %[[B:.+]]: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<exp>
// CHECK-SAME: indexing_maps = [#[[TRANSPOSED]], #[[IDENTITY]]]
// CHECK-SAME: ins(%[[A]] : tensor<16x8x32xf32>) outs(%[[B]] : tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
// CHECK-NEXT: return %[[RES]] : tensor<8x16x32xf32>
//
func.func @unary_transpose(%A : tensor<16x8x32xf32>, %B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
%empty = tensor.empty() : tensor<8x16x32xf32>
%transposed_A = linalg.transpose ins(%A : tensor<16x8x32xf32>) outs(%empty : tensor<8x16x32xf32>) permutation = [1, 0, 2]
%result = linalg.elementwise kind=#linalg.elementwise_kind<exp>
ins(%transposed_A : tensor<8x16x32xf32>) outs(%B: tensor<8x16x32xf32>) -> tensor<8x16x32xf32>
return %result : tensor<8x16x32xf32>
}

// -----

// CHECK-DAG: #[[IDENTITY:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[TRANSPOSED:.+]] = affine_map<(d0, d1) -> (d1, d0)>
//
// CHECK: func.func @binary_transposed(%[[A:.+]]: tensor<?x?xf32>, %[[B:.+]]: tensor<?x?xf32>, %[[C:.+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK-NEXT: %[[RES:.+]] = linalg.elementwise kind=#linalg.elementwise_kind<add>
// CHECK-SAME: indexing_maps = [#[[IDENTITY]], #[[TRANSPOSED]], #[[IDENTITY]]]
// CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[C]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK-NEXT: return %[[RES]] : tensor<?x?xf32>
//
func.func @binary_transposed(%A : tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = tensor.dim %A, %c0 : tensor<?x?xf32>
%dim1 = tensor.dim %A, %c1 : tensor<?x?xf32>

%empty = tensor.empty(%dim1, %dim0) : tensor<?x?xf32>
%transposed_B = linalg.transpose ins(%B : tensor<?x?xf32>) outs(%empty : tensor<?x?xf32>) permutation = [1, 0]
%result = linalg.elementwise kind=#linalg.elementwise_kind<add>
ins(%A, %transposed_B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
return %result : tensor<?x?xf32>
}