Skip to content

[mlir][TOSA] Fix linalg lowering of depthwise conv2d #130282

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 17 additions & 18 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -477,27 +477,21 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point must be zero for non-int8 integer types");

bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();

// Apply padding as necessary.
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
if (hasZp) {
int64_t intMin =
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMax =
APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMin = APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMax = APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();

if (inputZpVal < intMin || inputZpVal > intMax)
return rewriter.notifyMatchFailure(
op, "tosa.depthwise_conv op quantization has zp outside of input "
"range");
if (inputZpVal < intMin || inputZpVal > intMax)
return rewriter.notifyMatchFailure(
op, "tosa.depthwise_conv op quantization has zp outside of input "
"range");

zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);
}
TypedAttr zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);

llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
Expand Down Expand Up @@ -536,7 +530,7 @@ class DepthwiseConvConverter
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));

if (!hasZp) {
if (inputZpVal == 0 && weightZpVal == 0) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
Expand All @@ -556,8 +550,13 @@ class DepthwiseConvConverter
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
Value added = nestedBuilder.create<arith::AddFOp>(
loc, args[0], args[1]);
Value added;
if (llvm::isa<FloatType>(inputETy))
added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
args[1]);
else
added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
Expand Down
27 changes: 26 additions & 1 deletion mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -798,9 +798,10 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// CHECK: arith.subi
// CHECK: arith.muli
// CHECK: arith.divui
// CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: %[[PADDED:.+]] = tensor.pad %arg0 low[0, 1, 3, 0] high[0, 2, 4, 0] {
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: index, %[[ARG4:[0-9a-zA-Z_]+]]: index, %[[ARG5:[0-9a-zA-Z_]+]]: index, %[[ARG6:[0-9a-zA-Z_]+]]: index):
// CHECK: tensor.yield %cst : f32
// CHECK: tensor.yield [[CST0]] : f32
// CHECK: } : tensor<2x?x?x3xf32> to tensor<2x?x?x3xf32>
// CHECK: %[[CONV:.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<[1, 2]> : tensor<2xi64>} ins(%[[PADDED]], %arg1 : tensor<2x?x?x3xf32>, tensor<3x6x3x5xf32>) outs(%{{.*}} : tensor<2x?x?x3x5xf32>) -> tensor<2x?x?x3x5xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[CONV]] {{\[}}[0], [1], [2], [3, 4]]
Expand All @@ -812,6 +813,30 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x

// -----

// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>

// CHECK-LABEL: @depthwise_int_conv_zero_zp
func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[OUT:%.+]] = tensor.empty()
// CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
// CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
// CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
// CHECK: linalg.yield [[ADD]] : i32
// CHECK: } -> tensor<1x5x5x33xi32>
%input_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suspect value needs updating to values after #129943

%weight_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
return
}

// -----

// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>

Expand Down
Loading