-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[NFC] Fix some typos in libc and mlir comments #133374
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Qinkun Bao (qinkunbao) ChangesFull diff: https://github.com/llvm/llvm-project/pull/133374.diff 10 Files Affected:
diff --git a/libc/src/__support/CPP/atomic.h b/libc/src/__support/CPP/atomic.h
index f21755293102e..2f00b3ed32811 100644
--- a/libc/src/__support/CPP/atomic.h
+++ b/libc/src/__support/CPP/atomic.h
@@ -97,7 +97,7 @@ template <typename T> struct Atomic {
LIBC_INLINE constexpr Atomic() = default;
- // Intializes the value without using atomic operations.
+ // Initializes the value without using atomic operations.
LIBC_INLINE constexpr Atomic(value_type v) : val(v) {}
LIBC_INLINE Atomic(const Atomic &) = delete;
diff --git a/mlir/include/mlir/Analysis/Presburger/Simplex.h b/mlir/include/mlir/Analysis/Presburger/Simplex.h
index 4c40c4cdcb655..d89bbe37a6b3e 100644
--- a/mlir/include/mlir/Analysis/Presburger/Simplex.h
+++ b/mlir/include/mlir/Analysis/Presburger/Simplex.h
@@ -344,7 +344,7 @@ class SimplexBase {
SmallVector<UndoLogEntry, 8> undoLog;
/// Holds a vector of bases. The ith saved basis is the basis that should be
- /// restored when processing the ith occurrance of UndoLogEntry::RestoreBasis
+ /// restored when processing the ith occurrence of UndoLogEntry::RestoreBasis
/// in undoLog. This is used by getSnapshotBasis.
SmallVector<SmallVector<int, 8>, 8> savedBases;
@@ -367,7 +367,7 @@ class SimplexBase {
///
/// This does not directly support negative-valued variables, so it uses the big
/// M parameter trick to make all the variables non-negative. Basically we
-/// introduce an artifical variable M that is considered to have a value of
+/// introduce an artificial variable M that is considered to have a value of
/// +infinity and instead of the variables x, y, z, we internally use variables
/// M + x, M + y, M + z, which are now guaranteed to be non-negative. See the
/// documentation for SimplexBase for more details. M is also considered to be
@@ -561,7 +561,7 @@ struct SymbolicLexOpt {
/// negative for all values in the symbol domain, the row needs to be pivoted
/// irrespective of the precise value of the symbols. To answer queries like
/// "Is this symbolic sample always negative in the symbol domain?", we maintain
-/// a `LexSimplex domainSimplex` correponding to the symbol domain.
+/// a `LexSimplex domainSimplex` corresponding to the symbol domain.
///
/// In other cases, it may be that the symbolic sample is violated at some
/// values in the symbol domain and not violated at others. In this case,
diff --git a/mlir/include/mlir/AsmParser/AsmParser.h b/mlir/include/mlir/AsmParser/AsmParser.h
index 3c1bff1fbc7f1..33daf7ca26f49 100644
--- a/mlir/include/mlir/AsmParser/AsmParser.h
+++ b/mlir/include/mlir/AsmParser/AsmParser.h
@@ -47,7 +47,7 @@ parseAsmSourceFile(const llvm::SourceMgr &sourceMgr, Block *block,
/// not, an error diagnostic is emitted to the context and a null value is
/// returned.
/// If `numRead` is provided, it is set to the number of consumed characters on
-/// succesful parse. Otherwise, parsing fails if the entire string is not
+/// successful parse. Otherwise, parsing fails if the entire string is not
/// consumed.
/// Some internal copying can be skipped if the source string is known to be
/// null terminated.
@@ -58,7 +58,7 @@ Attribute parseAttribute(llvm::StringRef attrStr, MLIRContext *context,
/// This parses a single MLIR type to an MLIR context if it was valid. If not,
/// an error diagnostic is emitted to the context.
/// If `numRead` is provided, it is set to the number of consumed characters on
-/// succesful parse. Otherwise, parsing fails if the entire string is not
+/// successful parse. Otherwise, parsing fails if the entire string is not
/// consumed.
/// Some internal copying can be skipped if the source string is known to be
/// null terminated.
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
index f9816584b4655..1af9dc6cf2061 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
@@ -41,7 +41,7 @@ module {
//
// Note: position for loose_compressed level can vary in the end,
- // therefore we loosly check it with {{.*}}.
+ // therefore we loosely check it with {{.*}}.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
index f38b9ddfaa10e..690c4d2636a44 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
@@ -96,21 +96,21 @@ func.func @main() {
%f0 = arith.constant 0.0e+00 : f16
%c32 = arith.constant 32 : index
- // Intialize the lhs matrix with a linspace function.
+ // Initialize the lhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %K step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %K) : (index, index, index) -> f16
memref.store %idx, %lhs[%r, %c] : !lhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %K step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f16
memref.store %idx, %rhs[%r, %c] : !rhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f16
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
index 1eae22f0b85d0..2eef2ff8f3564 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
@@ -47,21 +47,21 @@ func.func @main() {
%f0 = arith.constant 0.0e+00 : f32
%c32 = arith.constant 32 : index
- // Intialize the lhs matrix with a linspace function.
+ // Initialize the lhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %K step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %K) : (index, index, index) -> f32
memref.store %idx, %lhs[%r, %c] : !lhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %K step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f32
memref.store %idx, %rhs[%r, %c] : !rhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f32
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
index 01144b3495866..2d91aa8f12b5e 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
@@ -20,7 +20,7 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with the column index in each row.
+ // Initialize the Input matrix with the column index in each row.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
%2 = arith.index_cast %arg1 : index to i16
@@ -28,7 +28,7 @@ func.func @main() {
memref.store %3, %0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %22[%arg0, %arg1] : memref<16x16xf16>
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
index 3301e68e5d123..18b1c1a1b0b45 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
@@ -20,13 +20,13 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with ones.
+ // Initialize the Input matrix with ones.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f1, %h0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %h_out[%arg0, %arg1] : memref<16x16xf32>
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
index 4db9aa056e757..78895cda72c5a 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
@@ -18,13 +18,13 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with ones.
+ // Initialize the Input matrix with ones.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f1, %0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %22[%arg0, %arg1] : memref<16x16xf32>
diff --git a/mlir/test/mlir-tblgen/op-properties-predicates.td b/mlir/test/mlir-tblgen/op-properties-predicates.td
index de59f5166d7e1..9834edd0cbb57 100644
--- a/mlir/test/mlir-tblgen/op-properties-predicates.td
+++ b/mlir/test/mlir-tblgen/op-properties-predicates.td
@@ -36,7 +36,7 @@ def OpWithPredicates : NS_Op<"op_with_predicates"> {
}
// CHECK-LABEL: OpWithPredicates::verifyInvariantsImpl()
-// Note: for test readibility, we capture [[maybe_unused]] into the variable maybe_unused
+// Note: for test readability, we capture [[maybe_unused]] into the variable maybe_unused
// CHECK: [[maybe_unused:\[\[maybe_unused\]\]]] int64_t tblgen_scalar = this->getScalar();
// CHECK: if (!((tblgen_scalar >= 0)))
// CHECK-NEXT: return emitOpError("property 'scalar' failed to satisfy constraint: non-negative int64_t");
|
@llvm/pr-subscribers-mlir-core Author: Qinkun Bao (qinkunbao) ChangesFull diff: https://github.com/llvm/llvm-project/pull/133374.diff 10 Files Affected:
diff --git a/libc/src/__support/CPP/atomic.h b/libc/src/__support/CPP/atomic.h
index f21755293102e..2f00b3ed32811 100644
--- a/libc/src/__support/CPP/atomic.h
+++ b/libc/src/__support/CPP/atomic.h
@@ -97,7 +97,7 @@ template <typename T> struct Atomic {
LIBC_INLINE constexpr Atomic() = default;
- // Intializes the value without using atomic operations.
+ // Initializes the value without using atomic operations.
LIBC_INLINE constexpr Atomic(value_type v) : val(v) {}
LIBC_INLINE Atomic(const Atomic &) = delete;
diff --git a/mlir/include/mlir/Analysis/Presburger/Simplex.h b/mlir/include/mlir/Analysis/Presburger/Simplex.h
index 4c40c4cdcb655..d89bbe37a6b3e 100644
--- a/mlir/include/mlir/Analysis/Presburger/Simplex.h
+++ b/mlir/include/mlir/Analysis/Presburger/Simplex.h
@@ -344,7 +344,7 @@ class SimplexBase {
SmallVector<UndoLogEntry, 8> undoLog;
/// Holds a vector of bases. The ith saved basis is the basis that should be
- /// restored when processing the ith occurrance of UndoLogEntry::RestoreBasis
+ /// restored when processing the ith occurrence of UndoLogEntry::RestoreBasis
/// in undoLog. This is used by getSnapshotBasis.
SmallVector<SmallVector<int, 8>, 8> savedBases;
@@ -367,7 +367,7 @@ class SimplexBase {
///
/// This does not directly support negative-valued variables, so it uses the big
/// M parameter trick to make all the variables non-negative. Basically we
-/// introduce an artifical variable M that is considered to have a value of
+/// introduce an artificial variable M that is considered to have a value of
/// +infinity and instead of the variables x, y, z, we internally use variables
/// M + x, M + y, M + z, which are now guaranteed to be non-negative. See the
/// documentation for SimplexBase for more details. M is also considered to be
@@ -561,7 +561,7 @@ struct SymbolicLexOpt {
/// negative for all values in the symbol domain, the row needs to be pivoted
/// irrespective of the precise value of the symbols. To answer queries like
/// "Is this symbolic sample always negative in the symbol domain?", we maintain
-/// a `LexSimplex domainSimplex` correponding to the symbol domain.
+/// a `LexSimplex domainSimplex` corresponding to the symbol domain.
///
/// In other cases, it may be that the symbolic sample is violated at some
/// values in the symbol domain and not violated at others. In this case,
diff --git a/mlir/include/mlir/AsmParser/AsmParser.h b/mlir/include/mlir/AsmParser/AsmParser.h
index 3c1bff1fbc7f1..33daf7ca26f49 100644
--- a/mlir/include/mlir/AsmParser/AsmParser.h
+++ b/mlir/include/mlir/AsmParser/AsmParser.h
@@ -47,7 +47,7 @@ parseAsmSourceFile(const llvm::SourceMgr &sourceMgr, Block *block,
/// not, an error diagnostic is emitted to the context and a null value is
/// returned.
/// If `numRead` is provided, it is set to the number of consumed characters on
-/// succesful parse. Otherwise, parsing fails if the entire string is not
+/// successful parse. Otherwise, parsing fails if the entire string is not
/// consumed.
/// Some internal copying can be skipped if the source string is known to be
/// null terminated.
@@ -58,7 +58,7 @@ Attribute parseAttribute(llvm::StringRef attrStr, MLIRContext *context,
/// This parses a single MLIR type to an MLIR context if it was valid. If not,
/// an error diagnostic is emitted to the context.
/// If `numRead` is provided, it is set to the number of consumed characters on
-/// succesful parse. Otherwise, parsing fails if the entire string is not
+/// successful parse. Otherwise, parsing fails if the entire string is not
/// consumed.
/// Some internal copying can be skipped if the source string is known to be
/// null terminated.
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
index f9816584b4655..1af9dc6cf2061 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_loose.mlir
@@ -41,7 +41,7 @@ module {
//
// Note: position for loose_compressed level can vary in the end,
- // therefore we loosly check it with {{.*}}.
+ // therefore we loosely check it with {{.*}}.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
index f38b9ddfaa10e..690c4d2636a44 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f16-f16-accum.mlir
@@ -96,21 +96,21 @@ func.func @main() {
%f0 = arith.constant 0.0e+00 : f16
%c32 = arith.constant 32 : index
- // Intialize the lhs matrix with a linspace function.
+ // Initialize the lhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %K step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %K) : (index, index, index) -> f16
memref.store %idx, %lhs[%r, %c] : !lhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %K step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f16
memref.store %idx, %rhs[%r, %c] : !rhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f16
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
index 1eae22f0b85d0..2eef2ff8f3564 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/sm80/transform-mma-sync-matmul-f32.mlir
@@ -47,21 +47,21 @@ func.func @main() {
%f0 = arith.constant 0.0e+00 : f32
%c32 = arith.constant 32 : index
- // Intialize the lhs matrix with a linspace function.
+ // Initialize the lhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %K step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %K) : (index, index, index) -> f32
memref.store %idx, %lhs[%r, %c] : !lhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %K step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f32
memref.store %idx, %rhs[%r, %c] : !rhs_memref_type
}
}
- // Intialize the rhs matrix with a linspace function.
+ // Initialize the rhs matrix with a linspace function.
scf.for %r = %c0 to %M step %c1 {
scf.for %c = %c0 to %N step %c1 {
%idx = func.call @compute_linspace_val(%r, %c, %N) : (index, index, index) -> f32
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
index 01144b3495866..2d91aa8f12b5e 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir
@@ -20,7 +20,7 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with the column index in each row.
+ // Initialize the Input matrix with the column index in each row.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
%2 = arith.index_cast %arg1 : index to i16
@@ -28,7 +28,7 @@ func.func @main() {
memref.store %3, %0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %22[%arg0, %arg1] : memref<16x16xf16>
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
index 3301e68e5d123..18b1c1a1b0b45 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32-bare-ptr.mlir
@@ -20,13 +20,13 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with ones.
+ // Initialize the Input matrix with ones.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f1, %h0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %h_out[%arg0, %arg1] : memref<16x16xf32>
diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
index 4db9aa056e757..78895cda72c5a 100644
--- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
+++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f32.mlir
@@ -18,13 +18,13 @@ func.func @main() {
%c32 = arith.constant 32 : index
%c1 = arith.constant 1 : index
- // Intialize the Input matrix with ones.
+ // Initialize the Input matrix with ones.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f1, %0[%arg0, %arg1] : memref<16x16xf16>
}
}
- // Intialize the accumulator matrix with zeros.
+ // Initialize the accumulator matrix with zeros.
scf.for %arg0 = %c0 to %c16 step %c1 {
scf.for %arg1 = %c0 to %c16 step %c1 {
memref.store %f0, %22[%arg0, %arg1] : memref<16x16xf32>
diff --git a/mlir/test/mlir-tblgen/op-properties-predicates.td b/mlir/test/mlir-tblgen/op-properties-predicates.td
index de59f5166d7e1..9834edd0cbb57 100644
--- a/mlir/test/mlir-tblgen/op-properties-predicates.td
+++ b/mlir/test/mlir-tblgen/op-properties-predicates.td
@@ -36,7 +36,7 @@ def OpWithPredicates : NS_Op<"op_with_predicates"> {
}
// CHECK-LABEL: OpWithPredicates::verifyInvariantsImpl()
-// Note: for test readibility, we capture [[maybe_unused]] into the variable maybe_unused
+// Note: for test readability, we capture [[maybe_unused]] into the variable maybe_unused
// CHECK: [[maybe_unused:\[\[maybe_unused\]\]]] int64_t tblgen_scalar = this->getScalar();
// CHECK: if (!((tblgen_scalar >= 0)))
// CHECK-NEXT: return emitOpError("property 'scalar' failed to satisfy constraint: non-negative int64_t");
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thx
No description provided.