Skip to content

[mlir] Vectorize tensor.pad with low padding for unit dims #133808

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 18 additions & 4 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2178,11 +2178,25 @@ vectorizePadOpPrecondition(tensor::PadOp padOp,
inputVectorSizes)))
return failure();

if (llvm::any_of(padOp.getLow(), [](Value v) {
std::optional<int64_t> res = getConstantIntValue(v);
return !res.has_value() || res.value() != 0;
// Padding with non-zero low pad values is not supported, unless the
// corresponding result dim is 1 as this would require shifting the results to
// the right for the low padded dims by the required amount of low padding.
// However, we do support low padding if the dims being low padded have result
// sizes of 1. The reason is when we have a low pad on a unit result dim, the
// input size of that dimension will be dynamically zero (as the sum of the
// low pad and input dim size has to be one) and hence we will create a zero
// mask as the lowering logic just makes the mask one for the input dim size -
// which is zero here. Hence we will load the pad value which is what we want
// in this case. If the low pad is dynamically zero then the lowering is
// correct as well as no shifts are necessary.
if (llvm::any_of(llvm::enumerate(padOp.getLow()), [&](const auto &en) {
Value padValue = en.value();
unsigned pos = en.index();
std::optional<int64_t> pad = getConstantIntValue(padValue);
return (!pad.has_value() || pad.value() != 0) &&
resultTensorShape[pos] != 1;
})) {
LDBG("low pad must all be zero: " << padOp << "\n");
LDBG("low pad must all be zero for all non unit dims: " << padOp << "\n");
return failure();
}

Expand Down
27 changes: 27 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,33 @@ module attributes {transform.with_named_sequence} {

// -----

// Padding with non-zero low pad values is not supported, unless the corresponding
// result dim is 1. Here `%l0` being a non-zero low pad applied to a
// non-unit result dimension makes this case unsupported.
func.func @tensor_pad_non_zero_low_pad(
%0 : tensor<?x?xf32>, %h0 : index, %h1 : index, %l0 : index)
-> tensor<2x4xf32> {
// expected-error @+3 {{Attempted to vectorize, but failed}}
%cst = arith.constant 42.43 : f32
%c0 = arith.constant 0 : index
%1 = tensor.pad %0 low[%l0, %c0] high[%h0, %h1] {
^bb0(%hh1: index, %hh2: index):
tensor.yield %cst : f32
} : tensor<?x?xf32> to tensor<2x4xf32>
return %1: tensor<2x4xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pad"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op
transform.yield
}
}

// -----

// With dynamically shaped source, the vectorizer infers the vector size for
// xfer Ops from the destination tensor and, conservatively, assumes
// out-of-bounds accesses. Out-of-bounds accesses require a pad value, but
Expand Down
42 changes: 42 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -664,6 +664,48 @@ module attributes {transform.with_named_sequence} {
}
}

// -----
// This case is supported because low padding `%l0` is applied on
// a unit dimension which is supported, non unit result dimension low
// padding is currently unsupported.
// CHECK-LABEL: func @test_masked_vectorize_non_zero_low_pad_unit_res_dim
func.func @test_masked_vectorize_non_zero_low_pad_unit_res_dim(
%0 : tensor<?x?xf32>, %h0 : index, %h1 : index, %l0 : index)
-> tensor<1x4xf32>
{
// CHECK-DAG: %[[C42:.*]] = arith.constant 4.243000e+01 : f32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[C0_1:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[D0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
// CHECK-DAG: %[[D1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
// CHECK: %[[MASK:.*]] = vector.create_mask %[[D0]], %[[D1]] : vector<1x4xi1>
// CHECK: %[[MASKED_READ:.*]] = vector.mask %[[MASK]] {
// CHECK-SAME: vector.transfer_read %{{.*}}[%[[C0_1]], %[[C0_1]]], %[[C42]]
// CHECK-SAME: {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32>
// CHECK-SAME: } : vector<1x4xi1> -> vector<1x4xf32>
// CHECK-DAG: %[[EMPTY:.*]] = tensor.empty() : tensor<1x4xf32>
// CHECK-DAG: %[[C0_2:.*]] = arith.constant 0 : index
// CHECK: %[[MASKED_WRITE:.*]] = vector.transfer_write %[[MASKED_READ]], %[[EMPTY]][%[[C0_2]], %[[C0_2]]]
// CHECK-SAME: {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[MASKED_WRITE]] : tensor<1x4xf32>
%cst = arith.constant 42.43 : f32
%c0 = arith.constant 0 : index
%1 = tensor.pad %0 low[%l0, %c0] high[%h0, %h1] {
^bb0(%hh1: index, %hh2: index):
tensor.yield %cst : f32
} : tensor<?x?xf32> to tensor<1x4xf32>
return %1: tensor<1x4xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pad"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [1, 4] : !transform.any_op
transform.yield
}
}

// -----

// Input identical as the test in vectorization-with-patterns.mlir. Output is
Expand Down