Skip to content

[flang] Inline fir.is_contiguous_box in some cases. #133812

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 41 additions & 18 deletions flang/lib/Optimizer/Transforms/SimplifyFIROperations.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,27 +75,50 @@ mlir::LogicalResult IsContiguousBoxCoversion::matchAndRewrite(
fir::IsContiguousBoxOp op, mlir::PatternRewriter &rewriter) const {
mlir::Location loc = op.getLoc();
fir::FirOpBuilder builder(rewriter, op.getOperation());
// TODO: support preferInlineImplementation.
bool doInline = options.preferInlineImplementation && false;
if (!doInline) {
// Generate Fortran runtime call.
mlir::Value result;
if (op.getInnermost()) {
mlir::Value one =
builder.createIntegerConstant(loc, builder.getI32Type(), 1);
result =
fir::runtime::genIsContiguousUpTo(builder, loc, op.getBox(), one);
} else {
result = fir::runtime::genIsContiguous(builder, loc, op.getBox());
mlir::Value box = op.getBox();

if (options.preferInlineImplementation) {
auto boxType = mlir::cast<fir::BaseBoxType>(box.getType());
unsigned rank = fir::getBoxRank(boxType);

// If rank is one, or 'innermost' attribute is set and
// it is not a scalar, then generate a simple comparison
// for the leading dimension: (stride == elem_size || extent == 0).
//
// The scalar cases are supposed to be optimized by the canonicalization.
if (rank == 1 || (op.getInnermost() && rank > 0)) {
mlir::Type idxTy = builder.getIndexType();
auto eleSize = builder.create<fir::BoxEleSizeOp>(loc, idxTy, box);
mlir::Value zero = fir::factory::createZeroValue(builder, loc, idxTy);
auto dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, zero);
mlir::Value stride = dimInfo.getByteStride();
mlir::Value pred1 = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, eleSize, stride);
mlir::Value extent = dimInfo.getExtent();
mlir::Value pred2 = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, extent, zero);
mlir::Value result =
builder.create<mlir::arith::OrIOp>(loc, pred1, pred2);
result = builder.createConvert(loc, op.getType(), result);
rewriter.replaceOp(op, result);
return mlir::success();
}
result = builder.createConvert(loc, op.getType(), result);
rewriter.replaceOp(op, result);
return mlir::success();
// TODO: support arrays with multiple dimensions.
}

// Generate inline implementation.
TODO(loc, "inline IsContiguousBoxOp");
return mlir::failure();
// Generate Fortran runtime call.
mlir::Value result;
if (op.getInnermost()) {
mlir::Value one =
builder.createIntegerConstant(loc, builder.getI32Type(), 1);
result = fir::runtime::genIsContiguousUpTo(builder, loc, box, one);
} else {
result = fir::runtime::genIsContiguous(builder, loc, box);
}
result = builder.createConvert(loc, op.getType(), result);
rewriter.replaceOp(op, result);
return mlir::success();
}

/// Generate a call to Size runtime function or an inline
Expand Down
160 changes: 91 additions & 69 deletions flang/test/Transforms/simplify-fir-operations.fir
Original file line number Diff line number Diff line change
@@ -1,130 +1,152 @@
// RUN: fir-opt --split-input-file --simplify-fir-operations %s | FileCheck %s

// -----
// RUN: fir-opt --split-input-file --simplify-fir-operations %s | FileCheck --check-prefixes=ALL,NOOPT %s
// RUN: fir-opt --split-input-file --simplify-fir-operations=prefer-inline-implementation=true %s | FileCheck --check-prefixes=ALL,OPT %s

func.func @test_none_innermost(%arg0: !fir.box<none>) -> i1 {
%0 = fir.is_contiguous_box %arg0 innermost : (!fir.box<none>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_none_innermost(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i1 {
// CHECK: %[[VAL_1:.*]] = arith.constant 1 : i32
// CHECK: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_0]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// CHECK: return %[[VAL_2]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_none_innermost(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i1 {
// ALL: %[[VAL_1:.*]] = arith.constant 1 : i32
// ALL: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_0]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// ALL: return %[[VAL_2]] : i1

// -----

func.func @test_none_whole(%arg0: !fir.box<none>) -> i1 {
%0 = fir.is_contiguous_box %arg0 whole : (!fir.box<none>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_none_whole(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i1 {
// CHECK: %[[VAL_1:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_0]]) : (!fir.box<none>) -> i1
// CHECK: return %[[VAL_1]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_none_whole(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i1 {
// ALL: %[[VAL_1:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_0]]) : (!fir.box<none>) -> i1
// ALL: return %[[VAL_1]] : i1
// ALL: }

// -----

func.func @test_array_innermost(%arg0: !fir.box<!fir.array<?xf32>>) -> i1 {
%0 = fir.is_contiguous_box %arg0 innermost : (!fir.box<!fir.array<?xf32>>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_array_innermost(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?xf32>>) -> i1 {
// CHECK: %[[VAL_1:.*]] = arith.constant 1 : i32
// CHECK: %[[VAL_2:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> !fir.box<none>
// CHECK: %[[VAL_3:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_2]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// CHECK: return %[[VAL_3]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_array_innermost(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?xf32>>) -> i1 {
// NOOPT: %[[VAL_1:.*]] = arith.constant 1 : i32
// NOOPT: %[[VAL_2:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> !fir.box<none>
// NOOPT: %[[VAL_3:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_2]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// NOOPT: return %[[VAL_3]] : i1
// OPT: %[[VAL_1:.*]] = arith.constant 0 : index
// OPT: %[[VAL_2:.*]] = fir.box_elesize %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> index
// OPT: %[[VAL_3:.*]]:3 = fir.box_dims %[[VAL_0]], %[[VAL_1]] : (!fir.box<!fir.array<?xf32>>, index) -> (index, index, index)
// OPT: %[[VAL_4:.*]] = arith.cmpi eq, %[[VAL_2]], %[[VAL_3]]#2 : index
// OPT: %[[VAL_5:.*]] = arith.cmpi eq, %[[VAL_3]]#1, %[[VAL_1]] : index
// OPT: %[[VAL_6:.*]] = arith.ori %[[VAL_4]], %[[VAL_5]] : i1
// OPT: return %[[VAL_6]] : i1

// -----

func.func @test_array_whole(%arg0: !fir.box<!fir.array<?xf32>>) -> i1 {
%0 = fir.is_contiguous_box %arg0 whole : (!fir.box<!fir.array<?xf32>>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_array_whole(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?xf32>>) -> i1 {
// CHECK: %[[VAL_1:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> !fir.box<none>
// CHECK: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_1]]) : (!fir.box<none>) -> i1
// CHECK: return %[[VAL_2]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_array_whole(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?xf32>>) -> i1 {
// NOOPT: %[[VAL_1:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> !fir.box<none>
// NOOPT: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_1]]) : (!fir.box<none>) -> i1
// NOOPT: return %[[VAL_2]] : i1
// OPT: %[[VAL_1:.*]] = arith.constant 0 : index
// OPT: %[[VAL_2:.*]] = fir.box_elesize %[[VAL_0]] : (!fir.box<!fir.array<?xf32>>) -> index
// OPT: %[[VAL_3:.*]]:3 = fir.box_dims %[[VAL_0]], %[[VAL_1]] : (!fir.box<!fir.array<?xf32>>, index) -> (index, index, index)
// OPT: %[[VAL_4:.*]] = arith.cmpi eq, %[[VAL_2]], %[[VAL_3]]#2 : index
// OPT: %[[VAL_5:.*]] = arith.cmpi eq, %[[VAL_3]]#1, %[[VAL_1]] : index
// OPT: %[[VAL_6:.*]] = arith.ori %[[VAL_4]], %[[VAL_5]] : i1
// OPT: return %[[VAL_6]] : i1

// -----

func.func @test_assumed_rank_innermost(%arg0: !fir.box<!fir.array<*:f32>>) -> i1 {
%0 = fir.is_contiguous_box %arg0 innermost : (!fir.box<!fir.array<*:f32>>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_assumed_rank_innermost(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> i1 {
// CHECK: %[[VAL_1:.*]] = arith.constant 1 : i32
// CHECK: %[[VAL_2:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// CHECK: %[[VAL_3:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_2]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// CHECK: return %[[VAL_3]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_assumed_rank_innermost(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> i1 {
// ALL: %[[VAL_1:.*]] = arith.constant 1 : i32
// ALL: %[[VAL_2:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// ALL: %[[VAL_3:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_2]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// ALL: return %[[VAL_3]] : i1

// -----

func.func @test_assumed_rank_whole(%arg0: !fir.box<!fir.array<*:f32>>) -> i1 {
%0 = fir.is_contiguous_box %arg0 whole : (!fir.box<!fir.array<*:f32>>) -> i1
return %0 : i1
}
// CHECK-LABEL: func.func @test_assumed_rank_whole(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> i1 {
// CHECK: %[[VAL_1:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// CHECK: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_1]]) : (!fir.box<none>) -> i1
// CHECK: return %[[VAL_2]] : i1
// CHECK: }
// ALL-LABEL: func.func @test_assumed_rank_whole(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> i1 {
// ALL: %[[VAL_1:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// ALL: %[[VAL_2:.*]] = fir.call @_FortranAIsContiguous(%[[VAL_1]]) : (!fir.box<none>) -> i1
// ALL: return %[[VAL_2]] : i1
// ALL: }

// -----

func.func @test_scalar_upoly(%arg0: !fir.class<none>) -> i1 {
%0 = fir.is_contiguous_box %arg0 innermost : (!fir.class<none>) -> i1
return %0 : i1
}
// ALL-LABEL: func.func @test_scalar_upoly(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.class<none>) -> i1 {
// ALL: %[[VAL_1:.*]] = arith.constant 1 : i32
// ALL: %[[VAL_2:.*]] = fir.convert %[[VAL_0]] : (!fir.class<none>) -> !fir.box<none>
// ALL: %[[VAL_3:.*]] = fir.call @_FortranAIsContiguousUpTo(%[[VAL_2]], %[[VAL_1]]) : (!fir.box<none>, i32) -> i1
// ALL: return %[[VAL_3]] : i1

// -----

func.func @test_none(%arg0: !fir.box<none>) -> i16 {
%0 = fir.box_total_elements %arg0 : (!fir.box<none>) -> i16
return %0 : i16
}
// CHECK-LABEL: func.func @test_none(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i16 {
// CHECK: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// CHECK: %[[VAL_1:.*]] = fir.address_of(@{{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// CHECK: %[[VAL_4:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_5:.*]] = fir.call @_FortranASize(%[[VAL_0]], %[[VAL_4]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// CHECK: %[[VAL_6:.*]] = fir.convert %[[VAL_5]] : (i64) -> i16
// CHECK: return %[[VAL_6]] : i16
// CHECK: }
// ALL-LABEL: func.func @test_none(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<none>) -> i16 {
// ALL: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// ALL: %[[VAL_1:.*]] = fir.address_of(@{{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// ALL: %[[VAL_4:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// ALL: %[[VAL_5:.*]] = fir.call @_FortranASize(%[[VAL_0]], %[[VAL_4]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// ALL: %[[VAL_6:.*]] = fir.convert %[[VAL_5]] : (i64) -> i16
// ALL: return %[[VAL_6]] : i16
// ALL: }

// -----

func.func @test_array(%arg0: !fir.box<!fir.array<?x?xf32>>) -> i32 {
%0 = fir.box_total_elements %arg0 : (!fir.box<!fir.array<?x?xf32>>) -> i32
return %0 : i32
}
// CHECK-LABEL: func.func @test_array(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?x?xf32>>) -> i32 {
// CHECK: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// CHECK: %[[VAL_1:.*]] = fir.address_of({{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// CHECK: %[[VAL_4:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?x?xf32>>) -> !fir.box<none>
// CHECK: %[[VAL_5:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_6:.*]] = fir.call @_FortranASize(%[[VAL_4]], %[[VAL_5]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// CHECK: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i64) -> i32
// CHECK: return %[[VAL_7]] : i32
// CHECK: }
// ALL-LABEL: func.func @test_array(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<?x?xf32>>) -> i32 {
// ALL: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// ALL: %[[VAL_1:.*]] = fir.address_of({{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// ALL: %[[VAL_4:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<?x?xf32>>) -> !fir.box<none>
// ALL: %[[VAL_5:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// ALL: %[[VAL_6:.*]] = fir.call @_FortranASize(%[[VAL_4]], %[[VAL_5]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// ALL: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i64) -> i32
// ALL: return %[[VAL_7]] : i32
// ALL: }

// -----

func.func @test_assumed_rank(%arg0: !fir.box<!fir.array<*:f32>>) -> index {
%0 = fir.box_total_elements %arg0 : (!fir.box<!fir.array<*:f32>>) -> index
return %0 : index
}
// CHECK-LABEL: func.func @test_assumed_rank(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> index {
// CHECK: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// CHECK: %[[VAL_1:.*]] = fir.address_of({{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// CHECK: %[[VAL_4:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// CHECK: %[[VAL_5:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// CHECK: %[[VAL_6:.*]] = fir.call @_FortranASize(%[[VAL_4]], %[[VAL_5]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// CHECK: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i64) -> index
// CHECK: return %[[VAL_7]] : index
// CHECK: }
// ALL-LABEL: func.func @test_assumed_rank(
// ALL-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !fir.box<!fir.array<*:f32>>) -> index {
// ALL: %[[VAL_3:.*]] = arith.constant {{.*}} : i32
// ALL: %[[VAL_1:.*]] = fir.address_of({{.*}}) : !fir.ref<!fir.char<1,{{.*}}>>
// ALL: %[[VAL_4:.*]] = fir.convert %[[VAL_0]] : (!fir.box<!fir.array<*:f32>>) -> !fir.box<none>
// ALL: %[[VAL_5:.*]] = fir.convert %[[VAL_1]] : (!fir.ref<!fir.char<1,{{.*}}>>) -> !fir.ref<i8>
// ALL: %[[VAL_6:.*]] = fir.call @_FortranASize(%[[VAL_4]], %[[VAL_5]], %[[VAL_3]]) : (!fir.box<none>, !fir.ref<i8>, i32) -> i64
// ALL: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i64) -> index
// ALL: return %[[VAL_7]] : index
// ALL: }