Skip to content

Revert "[tosa]: canonicalize dynamic size of tosa.slice to static output shape" #135525

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 13, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 1 addition & 54 deletions mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -731,62 +731,9 @@ struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
}
};

// Update size operand of tosa.slice if size has dynamic dims but corresponding
// output dim is static
struct SliceDynamicSizeCanonicalization
: public OpRewritePattern<tosa::SliceOp> {
using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;

LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
PatternRewriter &rewriter) const override {
ShapedType resultType = cast<ShapedType>(sliceOp.getType());

ElementsAttr sizeElems;
if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) {
return rewriter.notifyMatchFailure(
sliceOp, "size of slice must be a static ranked shape");
}

llvm::SmallVector<int64_t> sliceSizes =
llvm::to_vector(sizeElems.getValues<int64_t>());

bool replaceSliceSize{false};
// if size op has -1 indicating dynamic shape but corresponding dim on the
// output is statically known, update size to match with known output dim
// shape
for (const auto &[index, size] : llvm::enumerate(sliceSizes)) {
if (size == -1 && !resultType.isDynamicDim(index)) {
sliceSizes[index] = resultType.getDimSize(index);
replaceSliceSize = true;
}
}

if (!replaceSliceSize) {
return rewriter.notifyMatchFailure(
sliceOp, "no dimension of size of slice is dynamic that resolves "
"to static output shape");
}

auto size_op = getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes);
auto newSliceOp = rewriter.create<tosa::SliceOp>(
sliceOp.getLoc(), sliceOp.getType(), sliceOp.getInput1(),
sliceOp.getStart(), size_op);

rewriter.replaceOp(sliceOp, newSliceOp.getResult());

// Remove const_shape size op when it no longer has use point.
Operation *sizeConstShape = sliceOp.getSize().getDefiningOp();
if (sizeConstShape->getResult(0).hasOneUse())
rewriter.eraseOp(sizeConstShape);

return success();
}
};

void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ConcatSliceOptimization, SliceDynamicSizeCanonicalization>(
context);
results.add<ConcatSliceOptimization>(context);
}

//===----------------------------------------------------------------------===//
Expand Down
15 changes: 0 additions & 15 deletions mlir/test/Dialect/Tosa/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1212,18 +1212,3 @@ func.func @do_not_fold_intdiv_division_by_0() -> tensor<1x24x2xi32> {
%16 = tosa.intdiv %4, %1 : (tensor<1x24x2xi32>, tensor<1x24x2xi32>) -> tensor<1x24x2xi32>
return %16 : tensor<1x24x2xi32>
}


// ----
// CHECK-LABEL: func.func @slice_dynamic_size_static_output_canonicalize(
// CHECK-SAME: %[[ARG0:.*]]: tensor<2x60x59x?xf32>) -> tensor<2x60x58x?xf32> {
// CHECK: %[[START:.*]] = tosa.const_shape {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[SIZE:.*]] = tosa.const_shape {values = dense<[2, 60, 58, -1]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[SLICE:.*]] = tosa.slice %[[ARG0]], %[[START]], %[[SIZE]] : (tensor<2x60x59x?xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<2x60x58x?xf32>
// CHECK: return %[[SLICE]]
func.func @slice_dynamic_size_static_output_canonicalize(%arg0: tensor<2x60x59x?xf32>) -> tensor<2x60x58x?xf32> {
%0 = tosa.const_shape {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
%1 = tosa.const_shape {values = dense<[-1, 60, 58, -1]> : tensor<4xindex>} : () -> !tosa.shape<4>
%2 = tosa.slice %arg0, %0, %1 : (tensor<2x60x59x?xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<2x60x58x?xf32>
return %2 : tensor<2x60x58x?xf32>
}
Loading