Skip to content

[flang][cuda] Convert gpu.launch_func with result #137231

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions flang/lib/Optimizer/Transforms/CUFGPUToLLVMConversion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -147,14 +147,15 @@ struct GPULaunchKernelConversion
stream = adaptor.getAsyncDependencies().front();
}

rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
op, funcTy, cufLaunchClusterKernel,
rewriter.create<mlir::LLVM::CallOp>(
loc, funcTy, cufLaunchClusterKernel,
mlir::ValueRange{kernelPtr, adaptor.getClusterSizeX(),
adaptor.getClusterSizeY(), adaptor.getClusterSizeZ(),
adaptor.getGridSizeX(), adaptor.getGridSizeY(),
adaptor.getGridSizeZ(), adaptor.getBlockSizeX(),
adaptor.getBlockSizeY(), adaptor.getBlockSizeZ(),
stream, dynamicMemorySize, kernelArgs, nullPtr});
rewriter.eraseOp(op);
} else {
auto procAttr =
op->getAttrOfType<cuf::ProcAttributeAttr>(cuf::getProcAttrName());
Expand Down Expand Up @@ -189,13 +190,14 @@ struct GPULaunchKernelConversion
stream = adaptor.getAsyncDependencies().front();
}

rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
op, funcTy, cufLaunchKernel,
rewriter.create<mlir::LLVM::CallOp>(
loc, funcTy, cufLaunchKernel,
mlir::ValueRange{kernelPtr, adaptor.getGridSizeX(),
adaptor.getGridSizeY(), adaptor.getGridSizeZ(),
adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
adaptor.getBlockSizeZ(), stream, dynamicMemorySize,
kernelArgs, nullPtr});
rewriter.eraseOp(op);
}

return mlir::success();
Expand Down
24 changes: 24 additions & 0 deletions flang/test/Fir/CUDA/cuda-gpu-launch-func.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -229,3 +229,27 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<i1, dense<8> : ve
// CHECK-LABEL: llvm.func @_QMmod1Phost_sub()
// CHECK: %[[STREAM:.*]] = llvm.alloca %{{.*}} x i64 : (i64) -> !llvm.ptr
// CHECK: llvm.call @_FortranACUFLaunchCooperativeKernel(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %[[STREAM]], %{{.*}}, %{{.*}}, %{{.*}}) : (!llvm.ptr, i64, i64, i64, i64, i64, i64, !llvm.ptr, i32, !llvm.ptr, !llvm.ptr) -> ()

// -----

module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 ([email protected]:clementval/llvm-project.git 4116c1370ff76adf1e58eb3c39d0a14721794c70)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
llvm.func @_FortranACUFLaunchClusterKernel(!llvm.ptr, i64, i64, i64, i64, i64, i64, i64, i64, i64, !llvm.ptr, i32, !llvm.ptr, !llvm.ptr) attributes {sym_visibility = "private"}
llvm.func @_QMmod1Psub1() attributes {cuf.cluster_dims = #cuf.cluster_dims<x = 2 : i64, y = 2 : i64, z = 1 : i64>} {
llvm.return
}
llvm.func @_QQmain() attributes {fir.bindc_name = "test"} {
%0 = llvm.mlir.constant(1 : index) : i64
%1 = llvm.mlir.constant(2 : index) : i64
%2 = llvm.mlir.constant(0 : i32) : i32
%3 = llvm.mlir.constant(10 : index) : i64
%stream = llvm.alloca %0 x i64 : (i64) -> !llvm.ptr
%token = cuf.stream_cast %stream : !llvm.ptr
%4 = gpu.launch_func async [%token] @cuda_device_mod::@_QMmod1Psub1 blocks in (%3, %3, %0) threads in (%3, %3, %0) : i64 dynamic_shared_memory_size %2 {cuf.proc_attr = #cuf.cuda_proc<global>}
llvm.return
}
gpu.binary @cuda_device_mod [#gpu.object<#nvvm.target, "">]
}

// CHECK-LABEL: llvm.func @_QQmain()
// CHECK: %[[STREAM:.*]] = llvm.alloca %{{.*}} x i64 : (i64) -> !llvm.ptr
// CHECK: llvm.call @_FortranACUFLaunchKernel(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %[[STREAM]], %{{.*}}, %{{.*}}, %{{.*}})
Loading