Skip to content

[mlir][vector] linearize vector.insert_strided_slice (flatten to vector.shuffle) #138725

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
May 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
294 changes: 208 additions & 86 deletions mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -109,17 +109,110 @@ struct LinearizeVectorizable final
}
};

/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works
/// on a linearized vector.
/// Following,
template <typename TOp>
static bool stridesAllOne(TOp op) {
static_assert(
std::is_same_v<TOp, vector::ExtractStridedSliceOp> ||
std::is_same_v<TOp, vector::InsertStridedSliceOp>,
"expected vector.extract_strided_slice or vector.insert_strided_slice");
ArrayAttr strides = op.getStrides();
return llvm::all_of(
strides, [](auto stride) { return isConstantIntValue(stride, 1); });
}

/// Convert an array of attributes into a vector of integers, if possible.
static FailureOr<SmallVector<int64_t>> intsFromArrayAttr(ArrayAttr attrs) {
if (!attrs)
return failure();
SmallVector<int64_t> ints;
ints.reserve(attrs.size());
for (auto attr : attrs) {
if (auto intAttr = dyn_cast<IntegerAttr>(attr)) {
ints.push_back(intAttr.getInt());
} else {
return failure();
}
}
return ints;
}

/// Consider inserting a vector of shape `small` into a vector of shape `large`,
/// at position `offsets`: this function enumeratates all the indices in `large`
/// that are written to. The enumeration is with row-major ordering.
///
/// Example: insert a 1x2 vector into a 4x5 vector at position (1,3). The 2
/// positions written to are (1,3) and (1,4), which have linearized indices 8
/// and 9. So [8,9] is returned.
///
/// The length of the returned vector is equal to the number of elements in
/// the shape `small` (i.e. the product of dimensions of `small`).
SmallVector<int64_t> static getStridedSliceInsertionIndices(
ArrayRef<int64_t> small, ArrayRef<int64_t> large,
ArrayRef<int64_t> offsets) {

// Example of alignment between, `large`, `small` and `offsets`:
// large = 4, 5, 6, 7, 8
// small = 1, 6, 7, 8
// offsets = 2, 3, 0
//
// `offsets` has implicit trailing 0s, `small` has implicit leading 1s.
assert((large.size() >= small.size()) &&
"rank of 'large' cannot be lower than rank of 'small'");
assert((large.size() >= offsets.size()) &&
"rank of 'large' cannot be lower than the number of offsets");
unsigned delta = large.size() - small.size();
unsigned nOffsets = offsets.size();
auto getSmall = [&](int64_t i) -> int64_t {
return i >= delta ? small[i - delta] : 1;
};
auto getOffset = [&](int64_t i) -> int64_t {
return i < nOffsets ? offsets[i] : 0;
};

// Using 2 vectors of indices, at each iteration populate the updated set of
// indices based on the old set of indices, and the size of the small vector
// in the current iteration.
SmallVector<int64_t> indices{0};
int64_t stride = 1;
for (int i = large.size() - 1; i >= 0; --i) {
int64_t currentSize = indices.size();
int64_t smallSize = getSmall(i);
int64_t nextSize = currentSize * smallSize;
SmallVector<int64_t> nextIndices(nextSize);
int64_t *base = nextIndices.begin();
int64_t offset = getOffset(i) * stride;
for (int j = 0; j < smallSize; ++j) {
for (int k = 0; k < currentSize; ++k) {
base[k] = indices[k] + offset;
}
offset += stride;
base += currentSize;
}
stride *= large[i];
indices = std::move(nextIndices);
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I didn't have time to review this function.

return indices;
}

/// This pattern converts a vector.extract_strided_slice operation into a
/// vector.shuffle operation that has a rank-1 (linearized) operand and result.
///
/// For example, the following:
///
/// ```
/// vector.extract_strided_slice %source
/// { offsets = [..], strides = [..], sizes = [..] }
/// ```
///
/// is converted to :
/// ```
/// %source_1d = vector.shape_cast %source
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the offsets and sizes of the
/// extraction.
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// ```
///
/// `shuffle_indices_1d` is computed using the offsets and sizes of the original
/// vector.extract_strided_slice operation.
struct LinearizeVectorExtractStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
Expand All @@ -129,88 +222,116 @@ struct LinearizeVectorExtractStridedSlice final
: OpConversionPattern(typeConverter, context, benefit) {}

LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
matchAndRewrite(vector::ExtractStridedSliceOp extractStridedSliceOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType dstType =
getTypeConverter()->convertType<VectorType>(extractOp.getType());
assert(dstType && "vector type destination expected.");
if (extractOp.getVector().getType().isScalable() || dstType.isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");

ArrayAttr offsets = extractOp.getOffsets();
ArrayAttr sizes = extractOp.getSizes();
ArrayAttr strides = extractOp.getStrides();
if (!isConstantIntValue(strides[0], 1))
VectorType flatOutputType = getTypeConverter()->convertType<VectorType>(
extractStridedSliceOp.getType());
assert(flatOutputType && "vector type expected");

// Expect a legalization failure if the strides are not all 1 (if ever the
// verifier for extract_strided_slice allows non-1 strides).
if (!stridesAllOne(extractStridedSliceOp)) {
return rewriter.notifyMatchFailure(
extractOp, "Strided slice with stride != 1 is not supported.");
Value srcVector = adaptor.getVector();
// If kD offsets are specified for nD source vector (n > k), the granularity
// of the extraction is greater than 1. In this case last (n-k) dimensions
// form the extraction granularity.
// Example :
// vector.extract_strided_slice %src {
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} :
// vector<4x8x8xf32> to vector<2x2x8xf32>
// Here, extraction granularity is 8.
int64_t extractGranularitySize = 1;
int64_t nD = extractOp.getSourceVectorType().getRank();
int64_t kD = (int64_t)offsets.size();
int64_t k = kD;
while (k < nD) {
extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k];
++k;
extractStridedSliceOp,
"extract_strided_slice with strides != 1 not supported");
}
// Get total number of extracted slices.
int64_t nExtractedSlices = 1;
for (Attribute size : sizes) {
nExtractedSlices *= cast<IntegerAttr>(size).getInt();

FailureOr<SmallVector<int64_t>> offsets =
intsFromArrayAttr(extractStridedSliceOp.getOffsets());
if (failed(offsets)) {
return rewriter.notifyMatchFailure(extractStridedSliceOp,
"failed to get integer offsets");
}
// Compute the strides of the source vector considering first k dimensions.
llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize);
for (int i = kD - 2; i >= 0; --i) {
sourceStrides[i] = sourceStrides[i + 1] *
extractOp.getSourceVectorType().getShape()[i + 1];

ArrayRef<int64_t> inputShape =
extractStridedSliceOp.getSourceVectorType().getShape();

ArrayRef<int64_t> outputShape = extractStridedSliceOp.getType().getShape();

SmallVector<int64_t> indices = getStridedSliceInsertionIndices(
outputShape, inputShape, offsets.value());

Value srcVector = adaptor.getVector();
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractStridedSliceOp, flatOutputType, srcVector, srcVector, indices);
return success();
}
};

/// This pattern converts a vector.insert_strided_slice operation into a
/// vector.shuffle operation that has rank-1 (linearized) operands and result.
///
/// For example, the following:
/// ```
/// %0 = vector.insert_strided_slice %to_store, %into
/// {offsets = [1, 0, 0, 0], strides = [1, 1]}
/// : vector<2x2xi8> into vector<2x1x3x2xi8>
/// ```
///
/// is converted to
/// ```
/// %to_store_1d
/// = vector.shape_cast %to_store : vector<2x2xi8> to vector<4xi8>
/// %into_1d = vector.shape_cast %into : vector<2x1x3x2xi8> to vector<12xi8>
/// %out_1d = vector.shuffle %into_1d, %to_store_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d : vector<12xi8> to vector<2x1x3x2xi8>
/// ```
///
/// where shuffle_indices_1d in this case is
/// [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 10, 11].
/// ^^^^^^^^^^^^^^
/// to_store_1d
///
struct LinearizeVectorInsertStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::InsertStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorInsertStridedSlice(const TypeConverter &typeConverter,
MLIRContext *context,
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit) {}

LogicalResult
matchAndRewrite(vector::InsertStridedSliceOp insertStridedSliceOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {

// Expect a legalization failure if the strides are not all 1 (if ever the
// verifier for insert_strided_slice allows non-1 strides).
if (!stridesAllOne(insertStridedSliceOp)) {
return rewriter.notifyMatchFailure(
insertStridedSliceOp,
"insert_strided_slice with strides != 1 not supported");
}
// Final shuffle indices has nExtractedSlices * extractGranularitySize
// elements.
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices *
extractGranularitySize);
// Compute the strides of the extracted kD vector.
llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1);
// Compute extractedStrides.
for (int i = kD - 2; i >= 0; --i) {
extractedStrides[i] =
extractedStrides[i + 1] * cast<IntegerAttr>(sizes[i + 1]).getInt();

VectorType inputType = insertStridedSliceOp.getValueToStore().getType();
ArrayRef<int64_t> inputShape = inputType.getShape();

VectorType outputType = insertStridedSliceOp.getType();
ArrayRef<int64_t> outputShape = outputType.getShape();
int64_t nOutputElements = outputType.getNumElements();

FailureOr<SmallVector<int64_t>> offsets =
intsFromArrayAttr(insertStridedSliceOp.getOffsets());
if (failed(offsets)) {
return rewriter.notifyMatchFailure(insertStridedSliceOp,
"failed to get integer offsets");
}
// Iterate over all extracted slices from 0 to nExtractedSlices - 1
// and compute the multi-dimensional index and the corresponding linearized
// index within the source vector.
for (int64_t i = 0; i < nExtractedSlices; ++i) {
int64_t index = i;
// Compute the corresponding multi-dimensional index.
llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0);
for (int64_t j = 0; j < kD; ++j) {
multiDimIndex[j] = (index / extractedStrides[j]);
index -= multiDimIndex[j] * extractedStrides[j];
}
// Compute the corresponding linearized index in the source vector
// i.e. shift the multiDimIndex by the offsets.
int64_t linearizedIndex = 0;
for (int64_t j = 0; j < kD; ++j) {
linearizedIndex +=
(cast<IntegerAttr>(offsets[j]).getInt() + multiDimIndex[j]) *
sourceStrides[j];
}
// Fill the indices array form linearizedIndex to linearizedIndex +
// extractGranularitySize.
for (int64_t j = 0; j < extractGranularitySize; ++j) {
indices[i * extractGranularitySize + j] = linearizedIndex + j;
}
SmallVector<int64_t> sliceIndices = getStridedSliceInsertionIndices(
inputShape, outputShape, offsets.value());

SmallVector<int64_t> indices(nOutputElements);
std::iota(indices.begin(), indices.end(), 0);
for (auto [index, sliceIndex] : llvm::enumerate(sliceIndices)) {
indices[sliceIndex] = index + nOutputElements;
}
// Perform a shuffle to extract the kD vector.
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstType, srcVector, srcVector, indices);

Value flatToStore = adaptor.getValueToStore();
Value flatDest = adaptor.getDest();
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(insertStridedSliceOp,
flatDest.getType(), flatDest,
flatToStore, indices);
return success();
}
};
Expand Down Expand Up @@ -296,7 +417,7 @@ struct LinearizeVectorExtract final
// Skip if result is not a vector type
if (!isa<VectorType>(extractOp.getType()))
return rewriter.notifyMatchFailure(extractOp,
"scalar extract is not supported.");
"scalar extract not supported");
Type dstTy = getTypeConverter()->convertType(extractOp.getType());
assert(dstTy && "expected 1-D vector type");

Expand Down Expand Up @@ -453,8 +574,8 @@ struct LinearizeVectorSplat final
static bool isNotLinearizableBecauseScalable(Operation *op) {

bool unsupported =
isa<vector::ExtractStridedSliceOp, vector::ExtractOp, vector::InsertOp>(
op);
isa<vector::ExtractStridedSliceOp, vector::InsertStridedSliceOp,
vector::ExtractOp, vector::InsertOp>(op);
if (!unsupported)
return false;

Expand Down Expand Up @@ -539,6 +660,7 @@ void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
const TypeConverter &typeConverter, const ConversionTarget &target,
RewritePatternSet &patterns) {
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice>(
typeConverter, patterns.getContext());
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice,
LinearizeVectorInsertStridedSlice>(typeConverter,
patterns.getContext());
}
Loading