Skip to content

[mlir][tosa] Allow unranked input/output tensors in resize ops #141608

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2496,16 +2496,6 @@ LogicalResult tosa::ResizeOp::verify() {
const RankedTensorType outputType =
llvm::dyn_cast<RankedTensorType>(output.getType());

if (!inputType)
return emitOpError("expect a ranked input tensor");
if (!outputType)
return emitOpError("expect a ranked output tensor");

const int64_t oh = outputType.getDimSize(1);
const int64_t ow = outputType.getDimSize(2);
const int64_t ih = inputType.getDimSize(1);
const int64_t iw = inputType.getDimSize(2);

SmallVector<int64_t> scaleValues;
SmallVector<int64_t> offsetValues;
SmallVector<int64_t> borderValues;
Expand All @@ -2531,6 +2521,16 @@ LogicalResult tosa::ResizeOp::verify() {
const int64_t borderY = borderValues[0];
const int64_t borderX = borderValues[1];

if (!inputType)
return success();
if (!outputType)
return success();

const int64_t oh = outputType.getDimSize(1);
const int64_t ow = outputType.getDimSize(2);
const int64_t ih = inputType.getDimSize(1);
const int64_t iw = inputType.getDimSize(2);

// Don't check with input height that could be broadcast (ih != 1)
// since Linalg, a consumer of TOSA, expects broadcasting support
// in resize to be available. Taking the cautious approach for now,
Expand Down
20 changes: 20 additions & 0 deletions mlir/test/Dialect/Tosa/ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -743,6 +743,26 @@ func.func @test_resize(%arg0: tensor<1x32x32x8xf32>) -> tensor<1x64x64x8xf32> {
return %1 : tensor<1x64x64x8xf32>
}

// -----
// CHECK-LABEL: resize_unranked_output
func.func @test_resize_unranked_output(%arg0: tensor<1x32x32x8xf32>) -> tensor<*xf32> {
%scale = tosa.const_shape { values = dense<[4, 2, 4, 2]> : tensor<4xindex> } : () -> !tosa.shape<4>
%offset = tosa.const_shape { values = dense<[-1, -1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%border = tosa.const_shape { values = dense<[1, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%1 = tosa.resize %arg0, %scale, %offset, %border { mode = "BILINEAR" } : (tensor<1x32x32x8xf32>, !tosa.shape<4>, !tosa.shape<2>, !tosa.shape<2>) -> tensor<*xf32>
return %1 : tensor<*xf32>
}

// -----
// CHECK-LABEL: resize_unranked_input
func.func @test_resize_unranked_input(%arg0: tensor<*xf32>) -> tensor<1x64x64x8xf32> {
%scale = tosa.const_shape { values = dense<[4, 2, 4, 2]> : tensor<4xindex> } : () -> !tosa.shape<4>
%offset = tosa.const_shape { values = dense<[-1, -1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%border = tosa.const_shape { values = dense<[1, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%1 = tosa.resize %arg0, %scale, %offset, %border { mode = "BILINEAR" } : (tensor<*xf32>, !tosa.shape<4>, !tosa.shape<2>, !tosa.shape<2>) -> tensor<1x64x64x8xf32>
return %1 : tensor<1x64x64x8xf32>
}

// -----
// CHECK-LABEL: cast
func.func @test_cast1(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3xf32> {
Expand Down