Skip to content

[mlir][linalg] Enable CollapseLinalgDimensions to collapse memref based operations #68522

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 35 additions & 7 deletions mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1388,9 +1388,15 @@ static Value getCollapsedOpOperand(Location loc, GenericOp genericOp,
return operand;

// Insert a reshape to collapse the dimensions.
auto reshapeOp = builder.create<tensor::CollapseShapeOp>(
loc, operand, operandReassociation);
return reshapeOp.getResult();
if (isa<MemRefType>(operand.getType())) {
return builder
.create<memref::CollapseShapeOp>(loc, operand, operandReassociation)
.getResult();
} else {
return builder
.create<tensor::CollapseShapeOp>(loc, operand, operandReassociation)
.getResult();
}
}

/// Modify the `linalg.index` operations in the original generic op, to its
Expand Down Expand Up @@ -1444,6 +1450,19 @@ FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
}))
return failure();

bool hasBufferSemantics = genericOp.hasBufferSemantics();
if (hasBufferSemantics &&
!llvm::all_of(genericOp->getOperands(), [&](Value operand) -> bool {
MemRefType memRefToCollapse = dyn_cast<MemRefType>(operand.getType());
if (!memRefToCollapse)
return true;

return memref::CollapseShapeOp::isGuaranteedCollapsible(
memRefToCollapse, foldedIterationDims);
}))
return rewriter.notifyMatchFailure(genericOp,
"memref is not guaranteed collapsible");

CollapsingInfo collapsingInfo;
if (failed(collapsingInfo.initialize(genericOp.getNumLoops(),
foldedIterationDims))) {
Expand Down Expand Up @@ -1499,7 +1518,10 @@ FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
Value newOutput = getCollapsedOpOperand(loc, genericOp, &output,
collapsingInfo, rewriter);
outputOperands.push_back(newOutput);
resultTypes.push_back(newOutput.getType());
// If the op has "buffer semantics", then the init operands are ranked
// memrefs and the op has no results.
if (!hasBufferSemantics)
resultTypes.push_back(newOutput.getType());
}

// Create the generic op.
Expand Down Expand Up @@ -1538,9 +1560,15 @@ FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
genericOp.getIndexingMapMatchingResult(originalResult.value());
SmallVector<ReassociationIndices> reassociation =
getOperandReassociation(indexingMap, collapsingInfo);
Value result = rewriter.create<tensor::ExpandShapeOp>(
loc, originalResultType, collapsedOpResult, reassociation);
results.push_back(result);
if (isa<MemRefType>(collapsedOpResult.getType())) {
Value result = rewriter.create<memref::ExpandShapeOp>(
loc, originalResultType, collapsedOpResult, reassociation);
results.push_back(result);
} else {
Value result = rewriter.create<tensor::ExpandShapeOp>(
loc, originalResultType, collapsedOpResult, reassociation);
results.push_back(result);
}
} else {
results.push_back(collapsedOpResult);
}
Expand Down
46 changes: 46 additions & 0 deletions mlir/test/Dialect/Linalg/collapse-dim.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -70,3 +70,49 @@ func.func @uncollapsable(%arg0 : tensor<41x3x1x57xf32>, %arg1 : tensor<3x1x57x41
// CHECK-LABEL: func @uncollapsable(
// CHECK: linalg.generic
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]

// -----

// CHECK-LABEL: func.func private @collapsable_memref(
// CHECK-SAME: %[[VAL_0:.*]]: memref<1x24x32x8xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<1x24x32x8xf32>) -> memref<1x24x32x8xf32> {
// CHECK: %[[VAL_2:.*]] = memref.alloc() {alignment = 64 : i64} : memref<1x24x32x8xf32>
// CHECK: %[[VAL_3:.*]] = memref.collapse_shape %[[VAL_0]] {{\[\[}}0], [1], [2, 3]] : memref<1x24x32x8xf32> into memref<1x24x256xf32>
// CHECK: %[[VAL_4:.*]] = memref.collapse_shape %[[VAL_1]] {{\[\[}}0], [1], [2, 3]] : memref<1x24x32x8xf32> into memref<1x24x256xf32>
// CHECK: %[[VAL_5:.*]] = memref.collapse_shape %[[VAL_2]] {{\[\[}}0], [1], [2, 3]] : memref<1x24x32x8xf32> into memref<1x24x256xf32>
// CHECK: linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[VAL_3]], %[[VAL_4]] : memref<1x24x256xf32>, memref<1x24x256xf32>) outs(%[[VAL_5]] : memref<1x24x256xf32>) {
// CHECK: ^bb0(%[[VAL_6:.*]]: f32, %[[VAL_7:.*]]: f32, %[[VAL_8:.*]]: f32):
// CHECK: %[[VAL_9:.*]] = arith.addf %[[VAL_6]], %[[VAL_7]] : f32
// CHECK: linalg.yield %[[VAL_9]] : f32
// CHECK: }
// CHECK: return %[[VAL_2]] : memref<1x24x32x8xf32>
// CHECK: }

func.func private @collapsable_memref(%arg0: memref<1x24x32x8xf32>, %arg1: memref<1x24x32x8xf32>) -> (memref<1x24x32x8xf32>) {
%alloc = memref.alloc() {alignment = 64 : i64} : memref<1x24x32x8xf32>
linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1 : memref<1x24x32x8xf32>, memref<1x24x32x8xf32>) outs(%alloc : memref<1x24x32x8xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%0 = arith.addf %in, %in_0 : f32
linalg.yield %0 : f32
}
return %alloc : memref<1x24x32x8xf32>
}

// -----

// CHECK-LABEL: func @uncollapsable_strided_memref(
// CHECK: linalg.generic
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]

func.func @uncollapsable_strided_memref(%arg0: memref<2x6x24x48xi32>, %arg1: memref<2x6x24x48xi32>) -> (memref<2x6x24x48xi32>) {
%alloc = memref.alloc() {alignment = 64 : i64} : memref<2x6x24x48xi32>
%subview = memref.subview %arg0[0, 0, 0, 0] [1, 3, 12, 24] [1, 1, 1, 1] : memref<2x6x24x48xi32> to memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>
%subview0 = memref.subview %arg1[0, 0, 0, 0] [1, 3, 12, 24] [1, 1, 1, 1] : memref<2x6x24x48xi32> to memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>
%subview1 = memref.subview %alloc[0, 0, 0, 0] [1, 3, 12, 24] [1, 1, 1, 1] : memref<2x6x24x48xi32> to memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>
linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%subview, %subview0 : memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>, memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>) outs(%subview1 : memref<1x3x12x24xi32, strided<[6912, 1152, 48, 1], offset: 0>>) {
^bb0(%in: i32, %in_0: i32, %out: i32):
%0 = arith.addi %in, %in_0 : i32
linalg.yield %0 : i32
}
return %alloc : memref<2x6x24x48xi32>
}