-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] remove reshape dot test #70359
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Even if implementation changes, we should still keep running this test until we do so, and then update this test, rather than running the risk of overlooking this.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesEven if implementation changes, we should still Full diff: https://github.com/llvm/llvm-project/pull/70359.diff 1 Files Affected:
diff --git a/mlir/test/Dialect/SparseTensor/sparse_reshape_dot.mlir b/mlir/test/Dialect/SparseTensor/sparse_reshape_dot.mlir
index c562d6845e84ffe..e63c033e4645b15 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_reshape_dot.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_reshape_dot.mlir
@@ -1,83 +1,72 @@
-//
-// TODO: this test case is temporarily disabled as we are improving zero-cost sparse tensor reshaping.
-// XFAIL: *
-//
// RUN: mlir-opt %s --linalg-generalize-named-ops --sparsification --cse --canonicalize | FileCheck %s
#COO_2D = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton), posWidth = 32, crdWidth = 32 }>
#COO_3D = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique), d2 : singleton), posWidth = 32, crdWidth = 32 }>
-
// CHECK-LABEL: func.func @sparse_reshape_fused(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5x6xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<6x2x3xf32, #sparse_tensor.encoding<{{{.*}}}>>) -> tensor<?x?x?xf32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant false
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 5 : index
-// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 3 : index
-// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
-// CHECK-DAG: %[[VAL_7:.*]] = tensor.empty() : tensor<5x6xf32>
-// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index}
-// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index}
-// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 1 : index}
-// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 2 : index}
-// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]]
-// CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_7]] : memref<5x6xf32>
-// CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
-// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xi32>
-// CHECK: %[[VAL_16:.*]] = arith.extui %[[VAL_15]] : i32 to i64
-// CHECK: %[[VAL_17:.*]] = arith.index_cast %[[VAL_16]] : i64 to index
-// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xi32>
-// CHECK: %[[VAL_19:.*]] = arith.extui %[[VAL_18]] : i32 to i64
-// CHECK: %[[VAL_20:.*]] = arith.index_cast %[[VAL_19]] : i64 to index
-// CHECK: %[[VAL_21:.*]] = scf.while (%[[VAL_22:.*]] = %[[VAL_17]]) : (index) -> index {
-// CHECK: %[[VAL_23:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_20]] : index
-// CHECK: scf.condition(%[[VAL_23]]) %[[VAL_22]] : index
+// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
+// CHECK: %[[VAL_6:.*]] = tensor.collapse_shape %[[VAL_1]]
+// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<5x6xf32>
+// CHECK: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_6]] {level = 0 : index}
+// CHECK: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_6]] {level = 0 : index}
+// CHECK: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_6]] {level = 1 : index}
+// CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_6]]
+// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_7]] : memref<5x6xf32>
+// CHECK: scf.for %[[VAL_13:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
+// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xi32>
+// CHECK: %[[VAL_15:.*]] = arith.extui %[[VAL_14]] : i32 to i64
+// CHECK: %[[VAL_16:.*]] = arith.index_cast %[[VAL_15]] : i64 to index
+// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xi32>
+// CHECK: %[[VAL_18:.*]] = arith.extui %[[VAL_17]] : i32 to i64
+// CHECK: %[[VAL_19:.*]] = arith.index_cast %[[VAL_18]] : i64 to index
+// CHECK: %[[VAL_20:.*]] = scf.while (%[[VAL_21:.*]] = %[[VAL_16]]) : (index) -> index {
+// CHECK: %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_21]], %[[VAL_19]] : index
+// CHECK: scf.condition(%[[VAL_22]]) %[[VAL_21]] : index
// CHECK: } do {
-// CHECK: ^bb0(%[[VAL_24:.*]]: index):
-// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref<?xi32, strided<[?], offset: ?>>
-// CHECK: %[[VAL_26:.*]] = arith.extui %[[VAL_25]] : i32 to i64
-// CHECK: %[[VAL_27:.*]] = arith.index_cast %[[VAL_26]] : i64 to index
-// CHECK: %[[VAL_28:.*]] = scf.while (%[[VAL_29:.*]] = %[[VAL_24]]) : (index) -> index {
-// CHECK: %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_20]] : index
-// CHECK: %[[VAL_31:.*]] = scf.if %[[VAL_30]] -> (i1) {
-// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_29]]] : memref<?xi32, strided<[?], offset: ?>>
-// CHECK: %[[VAL_33:.*]] = arith.extui %[[VAL_32]] : i32 to i64
-// CHECK: %[[VAL_34:.*]] = arith.index_cast %[[VAL_33]] : i64 to index
-// CHECK: %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_27]] : index
-// CHECK: scf.yield %[[VAL_35]] : i1
+// CHECK: ^bb0(%[[VAL_23:.*]]: index):
+// CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_23]]] : memref<?xi32, strided<[?], offset: ?>>
+// CHECK: %[[VAL_25:.*]] = arith.extui %[[VAL_24]] : i32 to i64
+// CHECK: %[[VAL_26:.*]] = arith.index_cast %[[VAL_25]] : i64 to index
+// CHECK: %[[VAL_27:.*]] = scf.while (%[[VAL_28:.*]] = %[[VAL_23]]) : (index) -> index {
+// CHECK: %[[VAL_29:.*]] = arith.cmpi ult, %[[VAL_28]], %[[VAL_19]] : index
+// CHECK: %[[VAL_30:.*]] = scf.if %[[VAL_29]] -> (i1) {
+// CHECK: %[[VAL_31:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_28]]] : memref<?xi32, strided<[?], offset: ?>>
+// CHECK: %[[VAL_32:.*]] = arith.extui %[[VAL_31]] : i32 to i64
+// CHECK: %[[VAL_33:.*]] = arith.index_cast %[[VAL_32]] : i64 to index
+// CHECK: %[[VAL_34:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_26]] : index
+// CHECK: scf.yield %[[VAL_34]] : i1
// CHECK: } else {
// CHECK: scf.yield %[[VAL_2]] : i1
// CHECK: }
-// CHECK: scf.condition(%[[VAL_36:.*]]) %[[VAL_29]] : index
+// CHECK: scf.condition(%[[VAL_30]]) %[[VAL_28]] : index
// CHECK: } do {
-// CHECK: ^bb0(%[[VAL_37:.*]]: index):
-// CHECK: %[[VAL_38:.*]] = arith.addi %[[VAL_37]], %[[VAL_6]] : index
-// CHECK: scf.yield %[[VAL_38]] : index
+// CHECK: ^bb0(%[[VAL_35:.*]]: index):
+// CHECK: %[[VAL_36:.*]] = arith.addi %[[VAL_35]], %[[VAL_5]] : index
+// CHECK: scf.yield %[[VAL_36]] : index
+// CHECK: }
+// CHECK: %[[VAL_37:.*]] = tensor.extract %[[VAL_0]]{{\[}}%[[VAL_13]], %[[VAL_26]]] : tensor<5x6xf32>
+// CHECK: scf.for %[[VAL_38:.*]] = %[[VAL_23]] to %[[VAL_27]] step %[[VAL_5]] {
+// CHECK: %[[VAL_39:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_38]]] : memref<?xi32, strided<[?], offset: ?>>
+// CHECK: %[[VAL_40:.*]] = arith.extui %[[VAL_39]] : i32 to i64
+// CHECK: %[[VAL_41:.*]] = arith.index_cast %[[VAL_40]] : i64 to index
+// CHECK: %[[VAL_42:.*]] = tensor.extract %[[VAL_7]]{{\[}}%[[VAL_13]], %[[VAL_41]]] : tensor<5x6xf32>
+// CHECK: %[[VAL_43:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_38]]] : memref<?xf32>
+// CHECK: %[[VAL_44:.*]] = arith.mulf %[[VAL_37]], %[[VAL_43]] : f32
+// CHECK: %[[VAL_45:.*]] = arith.addf %[[VAL_42]], %[[VAL_44]] : f32
+// CHECK: memref.store %[[VAL_45]], %[[VAL_12]]{{\[}}%[[VAL_13]], %[[VAL_41]]] : memref<5x6xf32>
// CHECK: }
-// CHECK: %[[VAL_39:.*]] = tensor.extract %[[VAL_0]]{{\[}}%[[VAL_14]], %[[VAL_27]]] : tensor<5x6xf32>
-// CHECK: scf.for %[[VAL_40:.*]] = %[[VAL_24]] to %[[VAL_41:.*]] step %[[VAL_6]] {
-// CHECK: %[[VAL_42:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_40]]] : memref<?xi32, strided<[?], offset: ?>>
-// CHECK: %[[VAL_43:.*]] = arith.extui %[[VAL_42]] : i32 to i64
-// CHECK: %[[VAL_44:.*]] = arith.index_cast %[[VAL_43]] : i64 to index
-// CHECK: %[[VAL_45:.*]] = arith.muli %[[VAL_44]], %[[VAL_4]] : index
-// CHECK: %[[VAL_46:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_40]]] : memref<?xi32, strided<[?], offset: ?>>
-// CHECK: %[[VAL_47:.*]] = arith.extui %[[VAL_46]] : i32 to i64
-// CHECK: %[[VAL_48:.*]] = arith.index_cast %[[VAL_47]] : i64 to index
-// CHECK: %[[VAL_49:.*]] = arith.addi %[[VAL_45]], %[[VAL_48]] : index
-// CHECK: %[[VAL_50:.*]] = tensor.extract %[[VAL_7]]{{\[}}%[[VAL_14]], %[[VAL_49]]] : tensor<5x6xf32>
-// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xf32>
-// CHECK: %[[VAL_52:.*]] = arith.mulf %[[VAL_39]], %[[VAL_51]] : f32
-// CHECK: %[[VAL_53:.*]] = arith.addf %[[VAL_50]], %[[VAL_52]] : f32
-// CHECK: memref.store %[[VAL_53]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_49]]] : memref<5x6xf32>
-// CHECK: } {"Emitted from" = "linalg.generic"}
-// CHECK: scf.yield %[[VAL_54:.*]] : index
-// CHECK: } attributes {"Emitted from" = "linalg.generic"}
-// CHECK: } {"Emitted from" = "linalg.generic"}
-// CHECK: %[[VAL_55:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<5x6xf32>
-// CHECK: %[[VAL_56:.*]] = tensor.expand_shape %[[VAL_55]] {{\[\[}}0], [1, 2]] : tensor<5x6xf32> into tensor<5x2x3xf32>
-// CHECK: %[[VAL_57:.*]] = tensor.cast %[[VAL_56]] : tensor<5x2x3xf32> to tensor<?x?x?xf32>
-// CHECK: return %[[VAL_57]] : tensor<?x?x?xf32>
+// CHECK: scf.yield %[[VAL_27]] : index
+// CHECK: }
+// CHECK: }
+// CHECK: %[[VAL_46:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<5x6xf32>
+// CHECK: %[[VAL_47:.*]] = tensor.expand_shape %[[VAL_46]] {{\[\[}}0], [1, 2]] : tensor<5x6xf32> into tensor<5x2x3xf32>
+// CHECK: %[[VAL_48:.*]] = tensor.cast %[[VAL_47]] : tensor<5x2x3xf32> to tensor<?x?x?xf32>
+// CHECK: return %[[VAL_48]] : tensor<?x?x?xf32>
// CHECK: }
func.func @sparse_reshape_fused(%arg0: tensor<5x6xf32>, %arg1: tensor<6x2x3xf32, #COO_3D>) -> tensor<?x?x?xf32> {
%collapsed = tensor.collapse_shape %arg1 [[0], [1, 2]] : tensor<6x2x3xf32, #COO_3D> into tensor<6x6xf32, #COO_2D>
|
PeimingLiu
approved these changes
Oct 26, 2023
yinying-lisa-li
approved these changes
Oct 26, 2023
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This no longer tests a required feature.