Skip to content

[OpenMP] Simplify parallel reductions #70983

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 22 additions & 98 deletions openmp/libomptarget/DeviceRTL/src/Reduction.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,119 +44,45 @@ void gpu_irregular_warp_reduce(void *reduce_data, ShuffleReductFnTy shflFct,
}
}

#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 700
static uint32_t gpu_irregular_simd_reduce(void *reduce_data,
ShuffleReductFnTy shflFct) {
uint32_t size, remote_id, physical_lane_id;
physical_lane_id = mapping::getThreadIdInBlock() % mapping::getWarpSize();
__kmpc_impl_lanemask_t lanemask_lt = mapping::lanemaskLT();
__kmpc_impl_lanemask_t Liveness = mapping::activemask();
uint32_t logical_lane_id = utils::popc(Liveness & lanemask_lt) * 2;
__kmpc_impl_lanemask_t lanemask_gt = mapping::lanemaskGT();
do {
Liveness = mapping::activemask();
remote_id = utils::ffs(Liveness & lanemask_gt);
size = utils::popc(Liveness);
logical_lane_id /= 2;
shflFct(reduce_data, /*LaneId =*/logical_lane_id,
/*Offset=*/remote_id - 1 - physical_lane_id, /*AlgoVersion=*/2);
} while (logical_lane_id % 2 == 0 && size > 1);
return (logical_lane_id == 0);
}
#endif

static int32_t nvptx_parallel_reduce_nowait(int32_t TId, int32_t num_vars,
uint64_t reduce_size,
void *reduce_data,
static int32_t nvptx_parallel_reduce_nowait(void *reduce_data,
ShuffleReductFnTy shflFct,
InterWarpCopyFnTy cpyFct,
bool isSPMDExecutionMode, bool) {
uint32_t BlockThreadId = mapping::getThreadIdInBlock();
if (mapping::isMainThreadInGenericMode(/* IsSPMD */ false))
BlockThreadId = 0;
InterWarpCopyFnTy cpyFct) {
uint32_t NumThreads = omp_get_num_threads();
// Handle degenerated parallel regions, including all nested ones, first.
if (NumThreads == 1)
return 1;
/*
* This reduce function handles reduction within a team. It handles
* parallel regions in both L1 and L2 parallelism levels. It also
* supports Generic, SPMD, and NoOMP modes.
*
* 1. Reduce within a warp.
* 2. Warp master copies value to warp 0 via shared memory.
* 3. Warp 0 reduces to a single value.
* 4. The reduced value is available in the thread that returns 1.
*/

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
uint32_t WarpsNeeded =

/*
* 1. Reduce within a warp.
* 2. Warp master copies value to warp 0 via shared memory.
* 3. Warp 0 reduces to a single value.
* 4. The reduced value is available in the thread that returns 1.
*/

uint32_t BlockThreadId = mapping::getThreadIdInBlock();
uint32_t NumWarps =
(NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
uint32_t WarpId = mapping::getWarpIdInBlock();

// Volta execution model:
// For the Generic execution mode a parallel region either has 1 thread and
// beyond that, always a multiple of 32. For the SPMD execution mode we may
// have any number of threads.
if ((NumThreads % mapping::getWarpSize() == 0) || (WarpId < WarpsNeeded - 1))
gpu_regular_warp_reduce(reduce_data, shflFct);
else if (NumThreads > 1) // Only SPMD execution mode comes thru this case.
gpu_irregular_warp_reduce(reduce_data, shflFct,
/*LaneCount=*/NumThreads % mapping::getWarpSize(),
/*LaneId=*/mapping::getThreadIdInBlock() %
mapping::getWarpSize());

// When we have more than [mapping::getWarpSize()] number of threads
// a block reduction is performed here.
//
// Only L1 parallel region can enter this if condition.
if (NumThreads > mapping::getWarpSize()) {
// Gather all the reduced values from each warp
// to the first warp.
cpyFct(reduce_data, WarpsNeeded);

if (WarpId == 0)
gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
BlockThreadId);
}
return BlockThreadId == 0;
#else
__kmpc_impl_lanemask_t Liveness = mapping::activemask();
if (Liveness == lanes::All) // Full warp
gpu_regular_warp_reduce(reduce_data, shflFct);
else if (!(Liveness & (Liveness + 1))) // Partial warp but contiguous lanes
gpu_irregular_warp_reduce(reduce_data, shflFct,
/*LaneCount=*/utils::popc(Liveness),
/*LaneId=*/mapping::getThreadIdInBlock() %
mapping::getWarpSize());
else { // Dispersed lanes. Only threads in L2
// parallel region may enter here; return
// early.
return gpu_irregular_simd_reduce(reduce_data, shflFct);
}
gpu_regular_warp_reduce(reduce_data, shflFct);

// When we have more than [mapping::getWarpSize()] number of threads
// a block reduction is performed here.
//
// Only L1 parallel region can enter this if condition.
if (NumThreads > mapping::getWarpSize()) {
uint32_t WarpsNeeded =
(NumThreads + mapping::getWarpSize() - 1) / mapping::getWarpSize();
// Gather all the reduced values from each warp
// to the first warp.
cpyFct(reduce_data, WarpsNeeded);
cpyFct(reduce_data, NumWarps);

uint32_t WarpId = BlockThreadId / mapping::getWarpSize();
if (WarpId == 0)
gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
BlockThreadId);

return BlockThreadId == 0;
if (BlockThreadId < mapping::getWarpSize())
gpu_irregular_warp_reduce(reduce_data, shflFct, NumWarps, BlockThreadId);
}

// Get the OMP thread Id. This is different from BlockThreadId in the case of
// an L2 parallel region.
return TId == 0;
#endif // __CUDA_ARCH__ >= 700
// In Generic and in SPMD mode block thread Id 0 is what we want.
// It's either the main thread in SPMD mode or the "acting" main thread in the
// parallel region.
return BlockThreadId == 0;
}

uint32_t roundToWarpsize(uint32_t s) {
Expand All @@ -173,9 +99,7 @@ extern "C" {
int32_t __kmpc_nvptx_parallel_reduce_nowait_v2(
IdentTy *Loc, int32_t TId, int32_t num_vars, uint64_t reduce_size,
void *reduce_data, ShuffleReductFnTy shflFct, InterWarpCopyFnTy cpyFct) {
return nvptx_parallel_reduce_nowait(TId, num_vars, reduce_size, reduce_data,
shflFct, cpyFct, mapping::isSPMDMode(),
false);
return nvptx_parallel_reduce_nowait(reduce_data, shflFct, cpyFct);
}

int32_t __kmpc_nvptx_teams_reduce_nowait_v2(
Expand Down
25 changes: 25 additions & 0 deletions openmp/libomptarget/test/offloading/generic_reduction.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
// RUN: %libomptarget-compilexx-run-and-check-generic
// RUN: %libomptarget-compileoptxx-run-and-check-generic

#include <omp.h>
#include <stdio.h>
__attribute__((optnone)) void optnone(void) {}

int main() {
int sum = 0, nt;
#pragma omp target teams map(tofrom : sum, nt) num_teams(1)
{
nt = 3 * omp_get_max_threads();
optnone();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the intention here to prevent some ordering? Usually some inline assembly will accomplish that if you want nt not to be constant propagated.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it prevents SPMDztion.

#pragma omp parallel reduction(+ : sum)
sum += 1;
#pragma omp parallel reduction(+ : sum)
sum += 1;
#pragma omp parallel reduction(+ : sum)
sum += 1;
}
// CHECK: nt: [[NT:.*]]
// CHECK: sum: [[NT]]
printf("nt: %i\n", nt);
printf("sum: %i\n", sum);
}