Skip to content

[mlir][sparse] Implement rewriters to reinterpret maps on alloc_tenso… #70993

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 2, 2023

Conversation

PeimingLiu
Copy link
Member

…r operation

@PeimingLiu PeimingLiu requested a review from aartbik November 1, 2023 21:49
@llvmbot llvmbot added mlir:sparse Sparse compiler in MLIR mlir labels Nov 1, 2023
@llvmbot
Copy link
Member

llvmbot commented Nov 1, 2023

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-sparse

Author: Peiming Liu (PeimingLiu)

Changes

…r operation


Full diff: https://github.com/llvm/llvm-project/pull/70993.diff

3 Files Affected:

  • (modified) mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp (+54-1)
  • (modified) mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir (+2-3)
  • (added) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_block.mlir (+105)
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
index d14df6db8ee6b3f..307a609fd1b7746 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
@@ -6,7 +6,10 @@
 //
 //===----------------------------------------------------------------------===//
 
+#include "CodegenUtils.h"
+
 #include "mlir/Dialect/Affine/IR/AffineOps.h"
+#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
 #include "mlir/Dialect/Linalg/IR/Linalg.h"
 #include "mlir/Dialect/Linalg/Utils/Utils.h"
 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
@@ -188,6 +191,56 @@ struct DemapInsRewriter : public OpRewritePattern<SourceOp> {
   }
 };
 
+struct TensorAllocDemapper
+    : public OpRewritePattern<bufferization::AllocTensorOp> {
+  using OpRewritePattern::OpRewritePattern;
+  LogicalResult matchAndRewrite(bufferization::AllocTensorOp op,
+                                PatternRewriter &rewriter) const override {
+    if (!hasNonIdentityOperandsOrResults(op))
+      return failure();
+
+    Location loc = op.getLoc();
+    auto stt = getSparseTensorType(op.getResult());
+
+    SmallVector<Value> maxDimCrds;
+    maxDimCrds.reserve(stt.getDimRank());
+    ValueRange dynSz = op.getDynamicSizes();
+    for (int64_t dimSz : stt.getDimShape()) {
+      if (ShapedType::isDynamic(dimSz)) {
+        Value maxCrd = rewriter.create<arith::SubIOp>(
+            loc, dynSz.front(), constantIndex(rewriter, loc, 1));
+        maxDimCrds.push_back(maxCrd);
+        dynSz = dynSz.drop_front();
+      } else {
+        maxDimCrds.push_back(constantIndex(rewriter, loc, dimSz - 1));
+      }
+    }
+
+    ValueRange maxLvlCrds = stt.translateCrds(rewriter, loc, maxDimCrds,
+                                              CrdTransDirectionKind::dim2lvl);
+    auto lvlShape = stt.getLvlShape();
+    SmallVector<Value> dynLvlSzs;
+    for (unsigned i = 0, e = lvlShape.size(); i < e; i++) {
+      if (ShapedType::isDynamic(lvlShape[i])) {
+        Value sz = rewriter.create<arith::AddIOp>(
+            loc, maxLvlCrds[i], constantIndex(rewriter, loc, 1));
+        dynLvlSzs.push_back(sz);
+      }
+    }
+
+    assert(dynSz.empty()); // should have consumed all.
+    rewriter.startRootUpdate(op);
+    op->setOperands(dynLvlSzs);
+    op.getResult().setType(stt.getDemappedType());
+    rewriter.finalizeRootUpdate(op);
+    rewriter.setInsertionPointAfter(op);
+
+    Value t = genRemap(rewriter, stt.getEncoding(), op.getResult());
+    rewriter.replaceAllUsesExcept(op.getResult(), t, t.getDefiningOp());
+    return success();
+  }
+};
+
 struct TensorInsertDemapper
     : public DemapInsRewriter<TensorInsertDemapper, tensor::InsertOp> {
   using DemapInsRewriter::DemapInsRewriter;
@@ -309,7 +362,7 @@ void mlir::populateSparseReinterpretMap(RewritePatternSet &patterns,
   }
   if (scope == ReinterpretMapScope::kAll ||
       scope == ReinterpretMapScope::kExceptGeneric) {
-    patterns.add<TensorInsertDemapper, ForeachOpDemapper>(
+    patterns.add<TensorAllocDemapper, TensorInsertDemapper, ForeachOpDemapper>(
         patterns.getContext());
   }
 }
diff --git a/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir b/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
index be3ab37e9cbd182..972364289ac2e2a 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
@@ -57,10 +57,9 @@ func.func @mul(%arg0: tensor<32x32xf32>,
 
 // CHECK-LABEL:   func.func @sparse_foreach_reinterpret_map(
 // CHECK-SAME:      %[[VAL_0:.*]]: tensor<2x4xf64
-// CHECK:           %[[VAL_1:.*]] = bufferization.alloc_tensor() : tensor<2x4xf64
+// CHECK:           %[[VAL_1:.*]] = bufferization.alloc_tensor() : tensor<1x2x2x2xf64
 // CHECK:           %[[VAL_2:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<2x4xf64
-// CHECK:           %[[VAL_3:.*]] = sparse_tensor.reinterpret_map %[[VAL_1]] : tensor<2x4xf64
-// CHECK:           %[[VAL_4:.*]] = sparse_tensor.foreach in %[[VAL_2]] init(%[[VAL_3]])
+// CHECK:           %[[VAL_4:.*]] = sparse_tensor.foreach in %[[VAL_2]] init(%[[VAL_1]])
 // CHECK:           ^bb0(%[[VAL_5:.*]]: index, %[[VAL_6:.*]]: index, %[[VAL_7:.*]]: index, %[[VAL_8:.*]]: index, %[[VAL_9:.*]]: f64, %[[VAL_10:.*]]: tensor<1x2x2x2xf64
 // CHECK:             %[[VAL_11:.*]] = sparse_tensor.insert %[[VAL_9]] into %[[VAL_10]]{{\[}}%[[VAL_5]], %[[VAL_6]], %[[VAL_7]], %[[VAL_8]]] : tensor<1x2x2x2xf64
 // CHECK:             sparse_tensor.yield %[[VAL_11]] : tensor<1x2x2x2xf64
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_block.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_block.mlir
new file mode 100644
index 000000000000000..34a11e748ebd68b
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_block.mlir
@@ -0,0 +1,105 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+//  do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparse_compiler_opts} = enable-runtime-library=true
+// DEFINE: %{sparse_compiler_opts_sve} = enable-arm-sve=true %{sparse_compiler_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false enable-buffer-initialization=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and vectorization.
+// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and VLA vectorization.
+// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
+
+#CSR  = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed)
+}>
+
+#CSC  = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d1 : dense, d0 : compressed)
+}>
+
+#BSR = #sparse_tensor.encoding<{
+   map = ( i, j ) ->
+      ( i floordiv 2 : dense,
+        j floordiv 2 : compressed,
+        i mod 2      : dense,
+        j mod 2      : dense
+      )
+}>
+
+
+//
+// Integration test that tests conversions between sparse tensors.
+//
+module {
+  //
+  // Output utilities.
+  //
+  func.func @dumpf64(%arg0: memref<?xf64>) {
+    %c0 = arith.constant 0 : index
+    %d0 = arith.constant -1.0 : f64
+    %0 = vector.transfer_read %arg0[%c0], %d0: memref<?xf64>, vector<8xf64>
+    vector.print %0 : vector<8xf64>
+    return
+  }
+
+  //
+  // Main driver.
+  //
+  func.func @entry() {
+    %c0 = arith.constant 0 : index
+    %c1 = arith.constant 1 : index
+    %c2 = arith.constant 2 : index
+
+    //
+    // Initialize a 3-dim dense tensor.
+    //
+    %t = arith.constant dense<[
+       [  1.0,  2.0,  3.0,  4.0 ],
+       [  5.0,  6.0,  7.0,  8.0 ]
+    ]> : tensor<2x4xf64>
+
+    //
+    // Convert dense tensor directly to various sparse tensors.
+    //    tensor1: stored as 2x3x4
+    //    tensor2: stored as 3x4x2
+    //    tensor3: stored as 4x2x3
+    //
+    %1 = sparse_tensor.convert %t : tensor<2x4xf64> to tensor<2x4xf64, #CSR>
+    %2 = sparse_tensor.convert %1 : tensor<2x4xf64, #CSR> to tensor<2x4xf64, #BSR>
+    %3 = sparse_tensor.convert %2 : tensor<2x4xf64, #BSR> to tensor<2x4xf64, #CSC>
+
+    %v1 = sparse_tensor.values %1 : tensor<2x4xf64, #CSR> to memref<?xf64>
+    %v2 = sparse_tensor.values %2 : tensor<2x4xf64, #BSR> to memref<?xf64>
+    %v3 = sparse_tensor.values %3 : tensor<2x4xf64, #CSC> to memref<?xf64>
+
+    // CHECK:      ( 1, 2, 3, 4, 5, 6, 7, 8 )
+    // CHECK-NEXT: ( 1, 2, 5, 6, 3, 4, 7, 8 )
+    // CHECK-NEXT: ( 1, 5, 2, 6, 3, 7, 4, 8 )
+    call @dumpf64(%v1) : (memref<?xf64>) -> ()
+    call @dumpf64(%v2) : (memref<?xf64>) -> ()
+    call @dumpf64(%v3) : (memref<?xf64>) -> ()
+
+    return
+  }
+}

@PeimingLiu PeimingLiu merged commit c0d78c4 into llvm:main Nov 2, 2023
@PeimingLiu PeimingLiu deleted the demap-alloca branch November 2, 2023 01:15
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:sparse Sparse compiler in MLIR mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants