Skip to content

[mlir][linalg] Add an e2e test for linalg.matmul_transpose_a to ArmSME #71644

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 10, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
// RUN: mlir-opt %s \
// RUN: -transform-interpreter -test-transform-dialect-erase-schedule \
// RUN: -one-shot-bufferize="bufferize-function-boundaries" -canonicalize \
// RUN: -enable-arm-streaming="mode=locally enable-za" \
// RUN: -convert-vector-to-arm-sme -convert-arm-sme-to-scf \
// RUN: -convert-vector-to-scf -cse -arm-sve-legalize-vector-storage \
// RUN: -convert-vector-to-llvm=enable-arm-sme \
// RUN: -convert-vector-to-llvm=enable-arm-sve \
// RUN: -cse -canonicalize -allocate-arm-sme-tiles -test-lower-to-llvm | \
// RUN: %mcr_aarch64_cmd \
// RUN: -e=main -entry-point-result=void \
// RUN: -march=aarch64 -mattr="+sve,+sme" \
// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils | \
// RUN: FileCheck %s

func.func @matmul_transpose_a(%A : tensor<?x?xf32>, %B : tensor<?x?xf32>, %C : tensor<?x?xf32>) {
%res = linalg.matmul_transpose_a ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
%xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
return
}

func.func @main() {
%c0 = arith.constant 0 : i32
%c7 = arith.constant 7 : index

%A = arith.constant dense<[
[ 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19., 20., 21.],
[22., 23., 24., 25., 26., 27., 28.],
[29., 30., 31., 32., 33., 34., 35.],
[36., 37., 38., 39., 40., 41., 42.],
[43., 44., 45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54., 55., 56.],
[57., 58., 59., 60., 61., 62., 63.],
[64., 65., 66., 67., 68., 69., 70.],
[71., 72., 73., 74., 75., 76., 77.],
[78., 79., 80., 81., 82., 83., 84.],
[85., 86., 87., 88., 89., 90., 91.]
]> : tensor<13x7xf32>

%A_dyn = tensor.cast %A : tensor<13x7xf32> to tensor<?x?xf32>

%C_init = bufferization.alloc_tensor(%c7, %c7) : tensor<?x?xf32>
%C = linalg.fill ins(%c0 : i32) outs(%C_init : tensor<?x?xf32>) -> tensor<?x?xf32>

// CHECK: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [7, 7] strides = [7, 1] data =
// CHECK: [32955, 33514, 34073, 34632, 35191, 35750, 36309]
// CHECK: [33514, 34086, 34658, 35230, 35802, 36374, 36946]
// CHECK: [34073, 34658, 35243, 35828, 36413, 36998, 37583]
// CHECK: [34632, 35230, 35828, 36426, 37024, 37622, 38220]
// CHECK: [35191, 35802, 36413, 37024, 37635, 38246, 38857]
// CHECK: [35750, 36374, 36998, 37622, 38246, 38870, 39494]
// CHECK: [36309, 36946, 37583, 38220, 38857, 39494, 40131]
call @matmul_transpose_a(%A_dyn, %A_dyn, %C) : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> ()

return
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module : !transform.any_op {transform.readonly}) {
%matmul_transpose_a = transform.structured.match ops{["linalg.matmul_transpose_a"]} in %module
: (!transform.any_op) -> !transform.any_op

// Step 1: Tile for size [4] x [4], which corresponds to SVLs x SVLs, where
// SVLs is the number of 32-bit elements in a vector of SVL bits.
%tiled_linalg_op, %loops:3 = transform.structured.tile_using_for %matmul_transpose_a[[4], [4], 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)

// Step 2: Vectorize.
transform.structured.vectorize %tiled_linalg_op vector_sizes [[4], [4], 1]
: !transform.any_op

%func = transform.structured.match ops{["func.func"]} in %module
: (!transform.any_op) -> !transform.any_op

// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns).
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_masked_transfers
transform.apply_patterns.vector.transfer_permutation_patterns
transform.apply_patterns.vector.reduction_to_contract
} : !transform.any_op

// Step 4: Lower vector.contract to vector.outerproduct.
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
transform.apply_patterns.vector.lower_masks
} : !transform.any_op

transform.yield
}
}

func.func private @printMemrefF32(%ptr : tensor<*xf32>)