-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] remove filter-loop based algorithm support to handle a… #71840
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…ffine subscript expressions.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Peiming Liu (PeimingLiu) Changes…ffine subscript expressions. Patch is 35.48 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/71840.diff 17 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Pipelines/Passes.h b/mlir/include/mlir/Dialect/SparseTensor/Pipelines/Passes.h
index 4de83034b0386d1..718922341dac310 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Pipelines/Passes.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Pipelines/Passes.h
@@ -53,13 +53,6 @@ struct SparseCompilerOptions
"any-storage-any-loop",
"Enable sparse parallelization for any storage and loop."))};
- PassOptions::Option<bool> enableIndexReduction{
- *this, "enable-index-reduction",
- desc("Enable dependent index reduction based algorithm to handle "
- "non-trivial index expressions on sparse inputs (experimental "
- "features)"),
- init(false)};
-
PassOptions::Option<bool> enableRuntimeLibrary{
*this, "enable-runtime-library",
desc("Enable runtime library for manipulating sparse tensors"),
@@ -151,8 +144,8 @@ struct SparseCompilerOptions
/// Projects out the options for `createSparsificationPass`.
SparsificationOptions sparsificationOptions() const {
- return SparsificationOptions(parallelization, enableIndexReduction,
- enableGPULibgen, enableRuntimeLibrary);
+ return SparsificationOptions(parallelization, enableGPULibgen,
+ enableRuntimeLibrary);
}
/// Projects out the options for `createConvertVectorToLLVMPass`.
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
index 9c9387c4d0d5c56..b124364f8cb1f05 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
@@ -74,15 +74,14 @@ std::unique_ptr<Pass> createPreSparsificationRewritePass();
/// Options for the Sparsification pass.
struct SparsificationOptions {
- SparsificationOptions(SparseParallelizationStrategy p, bool idxReduc,
- bool gpuLibgen, bool enableRT)
- : parallelizationStrategy(p), enableIndexReduction(idxReduc),
- enableGPULibgen(gpuLibgen), enableRuntimeLibrary(enableRT) {}
+ SparsificationOptions(SparseParallelizationStrategy p, bool gpuLibgen,
+ bool enableRT)
+ : parallelizationStrategy(p), enableGPULibgen(gpuLibgen),
+ enableRuntimeLibrary(enableRT) {}
SparsificationOptions()
: SparsificationOptions(SparseParallelizationStrategy::kNone, false,
- false, true) {}
+ true) {}
SparseParallelizationStrategy parallelizationStrategy;
- bool enableIndexReduction;
bool enableGPULibgen;
bool enableRuntimeLibrary;
};
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index bf4c33ac61e96e0..dde138b4c99afe4 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -114,9 +114,6 @@ def SparsificationPass : Pass<"sparsification", "ModuleOp"> {
];
// TODO(57514): These enum options are duplicated in Passes.h.
let options = [
- Option<"enableIndexReduction", "enable-index-reduction", "bool",
- "false",
- "Enable dependent index reduction based algorithm to handle non-trivial index expressions on sparse inputs (experimental features)">,
Option<"parallelization", "parallelization-strategy", "mlir::SparseParallelizationStrategy",
"mlir::SparseParallelizationStrategy::kNone",
"Set the parallelization strategy", [{llvm::cl::values(
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
index e1cbf3482708ad0..f72d3b364b03907 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
@@ -82,7 +82,6 @@ struct SparsificationPass
SparsificationPass(const SparsificationPass &pass) = default;
SparsificationPass(const SparsificationOptions &options) {
parallelization = options.parallelizationStrategy;
- enableIndexReduction = options.enableIndexReduction;
enableGPULibgen = options.enableGPULibgen;
enableRuntimeLibrary = options.enableRuntimeLibrary;
}
@@ -90,8 +89,8 @@ struct SparsificationPass
void runOnOperation() override {
auto *ctx = &getContext();
// Translate strategy flags to strategy options.
- SparsificationOptions options(parallelization, enableIndexReduction,
- enableGPULibgen, enableRuntimeLibrary);
+ SparsificationOptions options(parallelization, enableGPULibgen,
+ enableRuntimeLibrary);
// Apply GPU libgen (if requested), sparsification, and cleanup rewriting.
RewritePatternSet patterns(ctx);
if (enableGPULibgen)
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
index 85d6a6ddabf9eb6..f6fe443bc2aae52 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
@@ -323,12 +323,16 @@ static bool findDepIdxSet(Merger &merger, TensorId tensor, Level lvl,
return true;
}
case AffineExprKind::Constant:
- // TODO: Support Constant AffineExp for slice-based codegen
case AffineExprKind::Mul: {
// TODO: Support index expression like `2 * d0`, we now only support more
// complicated cases like `2 * d0 + d1`.
if (!isSubExp)
return false;
+
+ // TODO: Support Constant AffineExp for slice-based codegen
+ if (a.isa<AffineConstantExpr>())
+ llvm_unreachable("Not yet implemented");
+
auto binOp = a.cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
if (rhs.isa<AffineConstantExpr>())
@@ -1953,7 +1957,7 @@ struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
const unsigned numFilterLoops = getNumNonTrivialIdxExpOnSparseLvls(op);
// TODO: we should probably always use slice-based codegen whenever
// possible, we can even intermix slice-based and filter-loop based codegen.
- bool idxReducBased = options.enableIndexReduction && numFilterLoops != 0;
+ bool idxReducBased = numFilterLoops != 0;
// If we have indexing map like (d0) -> (0, d0), there might be more
// levels then loops because of the constant index, that means we can not
// use numLoops as the upper bound for ranks of all tensors.
diff --git a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir
index fc97685b8378bf5..d6c3075a8732574 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir
@@ -55,58 +55,6 @@ func.func @mul_inv_dense1d(%arga: tensor<32xf32, #SpVec>,
return %0 : tensor<32xf32>
}
-// CHECK-LABEL: func.func @mul_inv_sparse1d(
-// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>,
-// CHECK-SAME: %[[VAL_1:.*]]: tensor<4xf32, #sparse_tensor.encoding<{{{.*}}}>>)
-// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_3:.*]] = arith.constant 1 : index
-// CHECK: %[[VAL_4:.*]] = arith.constant 3 : index
-// CHECK: %[[VAL_5:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf32>
-// CHECK: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<4xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<4xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<4xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf32>
-// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_2]]] : memref<?xindex>
-// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_6]]) -> (tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_15]]] : memref<?xindex>
-// CHECK: %[[VAL_18:.*]] = arith.cmpi eq, %[[VAL_17]], %[[VAL_4]] : index
-// CHECK: %[[VAL_19:.*]] = scf.if %[[VAL_18]] -> (tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_15]]] : memref<?xf32>
-// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_2]]] : memref<?xindex>
-// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_23:.*]] = scf.for %[[VAL_24:.*]] = %[[VAL_21]] to %[[VAL_22]] step %[[VAL_3]] iter_args(%[[VAL_25:.*]] = %[[VAL_16]]) -> (tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
-// CHECK: %[[VAL_27:.*]] = arith.mulf %[[VAL_26]], %[[VAL_20]] : f32
-// CHECK: %[[VAL_28:.*]] = arith.addf %[[VAL_27]], %[[VAL_5]] : f32
-// CHECK: %[[VAL_29:.*]] = sparse_tensor.insert %[[VAL_28]] into %[[VAL_25]]{{\[}}%[[VAL_17]]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: scf.yield %[[VAL_29]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: scf.yield %[[VAL_30:.*]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: } else {
-// CHECK: scf.yield %[[VAL_16]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: scf.yield %[[VAL_31:.*]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: %[[VAL_32:.*]] = sparse_tensor.load %[[VAL_33:.*]] hasInserts : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: return %[[VAL_32]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>
-func.func @mul_inv_sparse1d(%arga: tensor<32xf32, #SpVec>,
- %argb: tensor<4xf32, #SpVec>) -> tensor<32xf32, #SpVec> {
- %argx = tensor.empty() : tensor<32xf32, #SpVec>
- %0 = linalg.generic #trait1
- ins(%arga, %argb: tensor<32xf32, #SpVec>, tensor<4xf32, #SpVec>)
- outs(%argx: tensor<32xf32, #SpVec>) {
- ^bb(%a: f32, %b: f32, %x: f32):
- %0 = arith.mulf %a, %b : f32
- %1 = arith.addf %x, %0 : f32
- linalg.yield %1 : f32
- } -> tensor<32xf32, #SpVec>
- return %0 : tensor<32xf32, #SpVec>
-}
-
-
// CHECK-LABEL: func.func @mul_inv_enc_dense1d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<4xf32, #sparse_tensor.encoding<{{{.*}}}>>) -> tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> {
@@ -193,57 +141,6 @@ func.func @and_affine_dense1d(%arga: tensor<32xi32, #SpVec>,
return %0 : tensor<32xi32>
}
-// CHECK-LABEL: func.func @and_affine_sparse1d(
-// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>,
-// CHECK-SAME: %[[VAL_1:.*]]: tensor<34xi32, #sparse_tensor.encoding<{{{.*}}}>>)
-// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_3:.*]] = arith.constant 1 : index
-// CHECK: %[[VAL_4:.*]] = arith.constant 2 : index
-// CHECK: %[[VAL_5:.*]] = tensor.empty() : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xi32>
-// CHECK: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<34xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<34xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<34xi32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xi32>
-// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_2]]] : memref<?xindex>
-// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_5]]) -> (tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
-// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_15]]] : memref<?xi32>
-// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_2]]] : memref<?xindex>
-// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex>
-// CHECK: %[[VAL_21:.*]] = scf.for %[[VAL_22:.*]] = %[[VAL_19]] to %[[VAL_20]] step %[[VAL_3]] iter_args(%[[VAL_23:.*]] = %[[VAL_16]]) -> (tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xindex>
-// CHECK: %[[VAL_25:.*]] = arith.addi %[[VAL_17]], %[[VAL_4]] : index
-// CHECK: %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_25]] : index
-// CHECK: %[[VAL_27:.*]] = scf.if %[[VAL_26]] -> (tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xi32>
-// CHECK: %[[VAL_29:.*]] = arith.andi %[[VAL_18]], %[[VAL_28]] : i32
-// CHECK: %[[VAL_30:.*]] = sparse_tensor.insert %[[VAL_29]] into %[[VAL_23]]{{\[}}%[[VAL_17]]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: scf.yield %[[VAL_30]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: } else {
-// CHECK: scf.yield %[[VAL_23]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: scf.yield %[[VAL_31:.*]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: scf.yield %[[VAL_32:.*]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: }
-// CHECK: %[[VAL_33:.*]] = sparse_tensor.load %[[VAL_34:.*]] hasInserts : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: return %[[VAL_33]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>>
-func.func @and_affine_sparse1d(%arga: tensor<32xi32, #SpVec>,
- %argb: tensor<34xi32, #SpVec>) -> tensor<32xi32, #SpVec> {
- %argx = tensor.empty() : tensor<32xi32, #SpVec>
- %0 = linalg.generic #trait2
- ins(%arga, %argb: tensor<32xi32, #SpVec>, tensor<34xi32, #SpVec>)
- outs(%argx: tensor<32xi32, #SpVec>) {
- ^bb(%a: i32, %b: i32, %x: i32):
- %0 = arith.andi %a, %b : i32
- linalg.yield %0 : i32
- } -> tensor<32xi32, #SpVec>
- return %0 : tensor<32xi32, #SpVec>
-}
-
#trait3 = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // a
@@ -301,76 +198,6 @@ func.func @mul_affine_dense2d(%arga: tensor<32x16xf64, #CSR>,
return %0 : tensor<32x16xf64>
}
-
-// CHECK-LABEL: func.func @mul_affine_sparse2d(
-// CHECK-SAME: %[[VAL_0:.*]]: tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>,
-// CHECK-SAME: %[[VAL_1:.*]]: tensor<34x19xf64, #sparse_tensor.encoding<{{{.*}}}>>) -> tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> {
-// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 32 : index
-// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
-// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index
-// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f64
-// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index
-// CHECK-DAG: %[[VAL_TRUE:.*]] = arith.constant true
-// CHECK-DAG: %[[VAL_FALSE:.*]] = arith.constant false
-// CHECK: %[[VAL_8:.*]] = tensor.empty() : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>
-// CHECK: %[[VAL_9:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_10:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
-// CHECK: %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 1 : index} : tensor<34x19xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 1 : index} : tensor<34x19xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
-// CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<34x19xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
-// CHECK: %[[VAL_15:.*]] = scf.for %[[VAL_16:.*]] = %[[VAL_3]] to %[[VAL_2]] step %[[VAL_4]] iter_args(%[[VAL_17:.*]] = %[[VAL_8]]) -> (tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_18:.*]] = arith.addi %[[VAL_16]], %[[VAL_5]] : index
-// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_16]]] : memref<?xindex>
-// CHECK: %[[VAL_20:.*]] = arith.addi %[[VAL_16]], %[[VAL_4]] : index
-// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xindex>
-// CHECK: %[[VAL_22:.*]] = scf.for %[[VAL_23:.*]] = %[[VAL_19]] to %[[VAL_21]] step %[[VAL_4]] iter_args(%[[VAL_24:.*]] = %[[VAL_17]]) -> (tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_23]]] : memref<?xindex>
-// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xf64>
-// CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_18]]] : memref<?xindex>
-// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_4]] : index
-// CHECK: %[[VAL_29:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
-// CHECK: %[[VAL_30:.*]]:3 = scf.for %[[VAL_31:.*]] = %[[VAL_27]] to %[[VAL_29]] step %[[VAL_4]] iter_args(%[[VAL_32:.*]] = %[[VAL_6]], %[[VAL_200:.*]] = %[[VAL_FALSE]], %[[VAL_33:.*]] = %[[VAL_24]]) -> (f64, i1, tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_34:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_31]]] : memref<?xindex>
-// CHECK: %[[VAL_35:.*]] = arith.addi %[[VAL_25]], %[[VAL_7]] : index
-// CHECK: %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_35]] : index
-// CHECK: %[[VAL_37:.*]]:3 = scf.if %[[VAL_36]] -> (f64, i1, tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>>) {
-// CHECK: %[[VAL_38:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_31]]] : memref<?xf64>
-// CHECK: %[[VAL_39:.*]] = arith.mulf %[[VAL_26]], %[[VAL_38]] : f64
-// CHECK: %[[VAL_40:.*]] = ar...
[truncated]
|
aartbik
approved these changes
Nov 13, 2023
zahiraam
pushed a commit
to zahiraam/llvm-project
that referenced
this pull request
Nov 20, 2023
llvm#71840) …ffine subscript expressions.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
…ffine subscript expressions.