Skip to content

[mlir][vector] Extend TransferReadDropUnitDimsPattern to support partially-static memrefs #72142

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 99 additions & 28 deletions mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -260,12 +260,37 @@ void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
opToErase.push_back(read.getOperation());
}

/// Returns a copy of `shape` without unit dims.
static SmallVector<int64_t> getReducedShape(ArrayRef<int64_t> shape) {
SmallVector<int64_t> reducedShape;
llvm::copy_if(shape, std::back_inserter(reducedShape),
[](int64_t dimSize) { return dimSize != 1; });
return reducedShape;
}

/// Converts OpFoldResults to int64_t shape without unit dims.
static SmallVector<int64_t> getReducedShape(ArrayRef<OpFoldResult> mixedSizes) {
SmallVector<int64_t> reducedShape;
for (const auto size : mixedSizes) {
if (llvm::dyn_cast_if_present<Value>(size)) {
reducedShape.push_back(ShapedType::kDynamic);
continue;
}

auto value = cast<IntegerAttr>(size.get<Attribute>()).getValue();
if (value == 1)
continue;
reducedShape.push_back(value.getSExtValue());
}
return reducedShape;
}

/// Drops unit dimensions from the input MemRefType.
static MemRefType dropUnitDims(MemRefType inputType, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
SmallVector<int64_t> targetShape = llvm::to_vector(
llvm::make_filter_range(sizes, [](int64_t sz) { return sz != 1; }));
static MemRefType dropUnitDims(MemRefType inputType,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides) {
auto targetShape = getReducedShape(sizes);
Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
targetShape, inputType, offsets, sizes, strides);
return canonicalizeStridedLayout(cast<MemRefType>(rankReducedType));
Expand All @@ -277,30 +302,63 @@ static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
mlir::Location loc,
Value input) {
MemRefType inputType = cast<MemRefType>(input.getType());
assert(inputType.hasStaticShape());
SmallVector<int64_t> subViewOffsets(inputType.getRank(), 0);
SmallVector<int64_t> subViewStrides(inputType.getRank(), 1);
ArrayRef<int64_t> subViewSizes = inputType.getShape();
MemRefType resultType =
dropUnitDims(inputType, subViewOffsets, subViewSizes, subViewStrides);
SmallVector<OpFoldResult> offsets(inputType.getRank(),
rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> sizes = memref::getMixedSizes(rewriter, loc, input);
SmallVector<OpFoldResult> strides(inputType.getRank(),
rewriter.getIndexAttr(1));
MemRefType resultType = dropUnitDims(inputType, offsets, sizes, strides);

if (canonicalizeStridedLayout(resultType) ==
canonicalizeStridedLayout(inputType))
return input;
return rewriter.create<memref::SubViewOp>(
loc, resultType, input, subViewOffsets, subViewSizes, subViewStrides);
return rewriter.create<memref::SubViewOp>(loc, resultType, input, offsets,
sizes, strides);
}

/// Returns the number of dims that aren't unit dims.
static int getReducedRank(ArrayRef<int64_t> shape) {
return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
}

/// Returns a copy of `shape` without unit dims.
static SmallVector<int64_t> getReducedShape(ArrayRef<int64_t> shape) {
SmallVector<int64_t> reducedShape;
llvm::copy_if(shape, std::back_inserter(reducedShape),
[](int64_t dimSize) { return dimSize != 1; });
return reducedShape;
/// Trims non-scalable one dimensions from `oldType` and returns the result
/// type.
static VectorType trimNonScalableUnitDims(VectorType oldType) {
SmallVector<int64_t> newShape;
SmallVector<bool> newScalableDims;
for (auto [dimIdx, dimSize] : llvm::enumerate(oldType.getShape())) {
if (dimSize == 1 && !oldType.getScalableDims()[dimIdx])
continue;
newShape.push_back(dimSize);
newScalableDims.push_back(oldType.getScalableDims()[dimIdx]);
}
return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
}

// Rewrites vector.create_mask 'op' to drop non-scalable one dimensions.
static FailureOr<Value>
createMaskDropNonScalableUnitDims(PatternRewriter &rewriter, Location loc,
vector::CreateMaskOp op) {
auto type = op.getType();
auto reducedType = trimNonScalableUnitDims(type);
if (reducedType.getRank() == type.getRank())
return failure();

SmallVector<Value> reducedOperands;
for (auto [dim, dimIsScalable, operand] : llvm::zip_equal(
type.getShape(), type.getScalableDims(), op.getOperands())) {
if (dim == 1 && !dimIsScalable) {
// If the mask for the unit dim is not a constant of 1, do nothing.
auto constant = operand.getDefiningOp<arith::ConstantIndexOp>();
if (!constant || (constant.value() != 1))
return failure();
continue;
}
reducedOperands.push_back(operand);
}
return rewriter
.create<vector::CreateMaskOp>(loc, reducedType, reducedOperands)
.getResult();
}

namespace {
Expand All @@ -320,9 +378,7 @@ class TransferReadDropUnitDimsPattern
Value source = transferReadOp.getSource();
MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
// TODO: support tensor types.
if (!sourceType || !sourceType.hasStaticShape())
return failure();
if (sourceType.getNumElements() != vectorType.getNumElements())
if (!sourceType)
return failure();
// TODO: generalize this pattern, relax the requirements here.
if (transferReadOp.hasOutOfBoundsDim())
Expand All @@ -335,23 +391,38 @@ class TransferReadDropUnitDimsPattern
return failure();
// Check if the reduced vector shape matches the reduced source shape.
// Otherwise, this case is not supported yet.
int vectorReducedRank = getReducedRank(vectorType.getShape());
if (reducedRank != vectorReducedRank)
auto reducedVectorType = trimNonScalableUnitDims(vectorType);
if (reducedRank != reducedVectorType.getRank())
return failure();
if (llvm::any_of(transferReadOp.getIndices(), [](Value v) {
return getConstantIntValue(v) != static_cast<int64_t>(0);
}))
return failure();

Value maskOp = transferReadOp.getMask();
if (maskOp) {
auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
if (!createMaskOp)
return rewriter.notifyMatchFailure(
transferReadOp, "unsupported mask op, only 'vector.create_mask' is "
"currently supported");
FailureOr<Value> rankReducedCreateMask =
createMaskDropNonScalableUnitDims(rewriter, loc, createMaskOp);
if (failed(rankReducedCreateMask))
return failure();
maskOp = *rankReducedCreateMask;
}

Value reducedShapeSource =
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
SmallVector<Value> zeros(reducedRank, c0);
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
auto reducedVectorType = VectorType::get(
getReducedShape(vectorType.getShape()), vectorType.getElementType());

SmallVector<bool> inBounds(reducedVectorType.getRank(), true);
auto newTransferReadOp = rewriter.create<vector::TransferReadOp>(
loc, reducedVectorType, reducedShapeSource, zeros, identityMap);
loc, reducedVectorType, reducedShapeSource, zeros, identityMap,
transferReadOp.getPadding(), maskOp,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks for adding the previously omitted mask!

rewriter.getBoolArrayAttr(inBounds));
auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
loc, vectorType, newTransferReadOp);
rewriter.replaceOp(transferReadOp, shapeCast);
Expand Down
112 changes: 112 additions & 0 deletions mlir/test/Dialect/Vector/vector-transfer-drop-unit-dims-patterns.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,118 @@ func.func @transfer_write_and_vector_rank_reducing_to_0d(
// CHECK: %[[SHCAST:.+]] = vector.shape_cast %[[VECTOR]] : vector<1x1x1xf32> to vector<f32>
// CHECK: vector.transfer_write %[[SHCAST]], %[[SUBVIEW]]{{.*}} : vector<f32>, memref<f32>

func.func @transfer_read_dynamic_rank_reducing(
%arg : memref<?x1xi8, strided<[?, ?], offset: ?>>) -> vector<[16]x1xi8> {
%c0 = arith.constant 0 : index
%pad = arith.constant 0 : i8
%v = vector.transfer_read %arg[%c0, %c0], %pad {in_bounds = [true, true]} :
memref<?x1xi8, strided<[?, ?], offset: ?>>, vector<[16]x1xi8>
return %v : vector<[16]x1xi8>
}
// CHECK-LABEL: func @transfer_read_dynamic_rank_reducing
// CHECK-SAME: %[[ARG:.+]]: memref<?x1xi8
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = memref.dim %[[ARG]], %[[C0]] : memref<?x1xi8, strided<[?, ?], offset: ?>>
// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[ARG]][0, 0] [%[[DIM0]], 1] [1, 1] : memref<?x1xi8, {{.*}}> to memref<?xi8, {{.*}}>
// CHECK: vector.transfer_read %[[SUBVIEW]]{{.*}} : memref<?xi8, {{.*}}>, vector<[16]xi8>

func.func @masked_transfer_read_dynamic_rank_reducing_1(
%arg : memref<?x1xi8, strided<[?, ?], offset: ?>>,
%mask_dim0 : index) -> vector<[16]x1xi8> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%pad = arith.constant 0 : i8
%mask = vector.create_mask %mask_dim0, %c1 : vector<[16]x1xi1>
%v = vector.transfer_read %arg[%c0, %c0], %pad, %mask {in_bounds = [true, true]} :
memref<?x1xi8, strided<[?, ?], offset: ?>>, vector<[16]x1xi8>
return %v : vector<[16]x1xi8>
}
// CHECK-LABEL: func @masked_transfer_read_dynamic_rank_reducing_1
// CHECK-SAME: %[[ARG:.+]]: memref<?x1xi8
// CHECK-SAME: %[[MASK_DIM0:.+]]: index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[PAD:.+]] = arith.constant 0 : i8
// CHECK: %[[MASK:.+]] = vector.create_mask %[[MASK_DIM0]] : vector<[16]xi1>
// CHECK: %[[DIM0:.+]] = memref.dim %[[ARG]], %[[C0]] : memref<?x1xi8, strided<[?, ?], offset: ?>>
// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[ARG]][0, 0] [%[[DIM0]], 1] [1, 1] : memref<?x1xi8, {{.*}}> to memref<?xi8, {{.*}}>
// CHECK: vector.transfer_read %[[SUBVIEW]][{{.*}}], %[[PAD]], %[[MASK]] {in_bounds = [true]} : memref<?xi8, {{.*}}>, vector<[16]xi8>

func.func @masked_transfer_read_dynamic_rank_reducing_2(
%arg : memref<1x?x3x1x?x1xi8, strided<[?, ?, ?, ?, ?, ?], offset: ?>>,
%mask_dim1 : index, %mask_dim4 : index) -> vector<1x[1]x3x1x[16]x1xi8> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%pad = arith.constant 0 : i8
%mask = vector.create_mask %c1, %mask_dim1, %c2, %c1, %mask_dim4, %c1 : vector<1x[1]x3x1x[16]x1xi1>
%v = vector.transfer_read %arg[%c0, %c0, %c0, %c0, %c0, %c0], %pad, %mask {in_bounds = [true, true, true, true, true, true]} :
memref<1x?x3x1x?x1xi8, strided<[?, ?, ?, ?, ?, ?], offset: ?>>, vector<1x[1]x3x1x[16]x1xi8>
return %v : vector<1x[1]x3x1x[16]x1xi8>
}
// CHECK-LABEL: func @masked_transfer_read_dynamic_rank_reducing_2
// CHECK-SAME: %[[ARG:.+]]: memref<1x?x3x1x?x1xi8
// CHECK-SAME: %[[MASK_DIM1:.+]]: index, %[[MASK_DIM4:.+]]: index
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index
// CHECK-DAG: %[[PAD:.+]] = arith.constant 0 : i8
// CHECK: %[[MASK:.+]] = vector.create_mask %[[MASK_DIM1]], %[[C2]], %[[MASK_DIM4]] : vector<[1]x3x[16]xi1>
// CHECK: %[[DIM1:.+]] = memref.dim %[[ARG]], %[[C1]] : memref<1x?x3x1x?x1xi8, strided<[?, ?, ?, ?, ?, ?], offset: ?>>
// CHECK: %[[DIM4:.+]] = memref.dim %[[ARG]], %[[C4]] : memref<1x?x3x1x?x1xi8, strided<[?, ?, ?, ?, ?, ?], offset: ?>>
// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[ARG]][0, 0, 0, 0, 0, 0] [1, %[[DIM1]], 3, 1, %[[DIM4]], 1] [1, 1, 1, 1, 1, 1] : memref<1x?x3x1x?x1xi8, {{.*}}> to memref<?x3x?xi8, {{.*}}>
// CHECK: vector.transfer_read %[[SUBVIEW]][{{.*}}], %[[PAD]], %[[MASK]] {in_bounds = [true, true, true]} : memref<?x3x?xi8, {{.*}}>, vector<[1]x3x[16]xi8>

/// Only masks operands of vector.create_mask are currently supported.
func.func @unsupported_masked_transfer_read_dynamic_rank_reducing_1(
%arg : memref<?x1xi8, strided<[?, ?], offset: ?>>,
%mask : vector<[16]x1xi1>) -> vector<[16]x1xi8> {
%c0 = arith.constant 0 : index
%pad = arith.constant 0 : i8
%v = vector.transfer_read %arg[%c0, %c0], %pad, %mask {in_bounds = [true, true]} :
memref<?x1xi8, strided<[?, ?], offset: ?>>, vector<[16]x1xi8>
return %v : vector<[16]x1xi8>
}
// CHECK-LABEL: func @unsupported_masked_transfer_read_dynamic_rank_reducing_1
// CHECK-SAME: %[[ARG:.+]]: memref<?x1xi8
// CHECK-NOT: vector.create_mask
// CHECK-NOT: memref.subview
// CHECK: vector.transfer_read %[[ARG]]

/// Unit dim mask must be constant of 1.
func.func @unsupported_masked_transfer_read_dynamic_rank_reducing_2(
%arg : memref<?x1xi8, strided<[?, ?], offset: ?>>,
%mask_dim0 : index, %mask_dim1 : index) -> vector<[16]x1xi8> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%pad = arith.constant 0 : i8
%mask = vector.create_mask %mask_dim0, %mask_dim1 : vector<[16]x1xi1>
%v = vector.transfer_read %arg[%c0, %c0], %pad, %mask {in_bounds = [true, true]} :
memref<?x1xi8, strided<[?, ?], offset: ?>>, vector<[16]x1xi8>
return %v : vector<[16]x1xi8>
}
// CHECK-LABEL: func @unsupported_masked_transfer_read_dynamic_rank_reducing_2
// CHECK-SAME: %[[ARG:.+]]: memref<?x1xi8
// CHECK-NOT: memref.subview
// CHECK: vector.transfer_read {{.*}} vector<[16]x1xi8>

/// Unit dim must be non-scalable.
func.func @masked_transfer_read_dynamic_rank_reducing_scalable_unit_dim(
%arg : memref<?x1xi8, strided<[?, ?], offset: ?>>,
%mask_dim0 : index) -> vector<[16]x[1]xi8> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%pad = arith.constant 0 : i8
%mask = vector.create_mask %mask_dim0, %c1 : vector<[16]x[1]xi1>
%v = vector.transfer_read %arg[%c0, %c0], %pad, %mask {in_bounds = [true, true]} :
memref<?x1xi8, strided<[?, ?], offset: ?>>, vector<[16]x[1]xi8>
return %v : vector<[16]x[1]xi8>
}
// CHECK-LABEL: func @masked_transfer_read_dynamic_rank_reducing_scalable_unit_dim
// CHECK-SAME: %[[ARG:.+]]: memref<?x1xi8
// CHECK-NOT: memref.subview
// CHECK: vector.transfer_read {{.*}} vector<[16]x[1]xi8>

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%func_op: !transform.op<"func.func"> {transform.readonly}) {
transform.apply_patterns to %func_op {
Expand Down