Skip to content

[mlir] Add subbyte emulation support for memref.store. #73174

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 120 additions & 27 deletions mlir/lib/Dialect/MemRef/Transforms/EmulateNarrowType.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,9 @@
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/DialectConversion.h"
Expand Down Expand Up @@ -102,13 +104,64 @@ static Value getOffsetForBitwidth(Location loc, OpFoldResult srcIdx,
AffineExpr s0;
bindSymbols(builder.getContext(), s0);
int scaleFactor = targetBits / sourceBits;
OpFoldResult offsetVal = affine::makeComposedFoldedAffineApply(
builder, loc, (s0 % scaleFactor) * sourceBits, {srcIdx});
AffineExpr offsetExpr = (s0 % scaleFactor) * sourceBits;
OpFoldResult offsetVal =
affine::makeComposedFoldedAffineApply(builder, loc, offsetExpr, {srcIdx});
Value bitOffset = getValueOrCreateConstantIndexOp(builder, loc, offsetVal);
IntegerType dstType = builder.getIntegerType(targetBits);
return builder.create<arith::IndexCastOp>(loc, dstType, bitOffset);
}

/// When writing a subbyte size, masked bitwise operations are used to only
/// modify the relevant bits. This function returns an and mask for clearing
/// the destination bits in a subbyte write. E.g., when writing to the second
/// i4 in an i32, 0xFFFFFF0F is created.
static Value getSubByteWriteMask(Location loc, OpFoldResult linearizedIndices,
int64_t srcBits, int64_t dstBits,
Value bitwidthOffset, OpBuilder &builder) {
auto dstIntegerType = builder.getIntegerType(dstBits);
auto maskRightAlignedAttr =
builder.getIntegerAttr(dstIntegerType, (1 << srcBits) - 1);
Value maskRightAligned = builder.create<arith::ConstantOp>(
loc, dstIntegerType, maskRightAlignedAttr);
Value writeMaskInverse =
builder.create<arith::ShLIOp>(loc, maskRightAligned, bitwidthOffset);
auto flipValAttr = builder.getIntegerAttr(dstIntegerType, -1);
Value flipVal =
builder.create<arith::ConstantOp>(loc, dstIntegerType, flipValAttr);
return builder.create<arith::XOrIOp>(loc, writeMaskInverse, flipVal);
}

/// Returns the scaled linearized index based on the `srcBits` and `dstBits`
/// sizes. The input `linearizedIndex` has the granularity of `srcBits`, and
/// the returned index has the granularity of `dstBits`
static Value getIndicesForLoadOrStore(OpBuilder &builder, Location loc,
OpFoldResult linearizedIndex,
int64_t srcBits, int64_t dstBits) {
AffineExpr s0;
bindSymbols(builder.getContext(), s0);
int64_t scaler = dstBits / srcBits;
OpFoldResult scaledLinearizedIndices = affine::makeComposedFoldedAffineApply(
builder, loc, s0.floorDiv(scaler), {linearizedIndex});
return getValueOrCreateConstantIndexOp(builder, loc, scaledLinearizedIndices);
}

static OpFoldResult
getLinearizedSrcIndices(OpBuilder &builder, Location loc, int64_t srcBits,
const SmallVector<OpFoldResult> &indices,
Value memref) {
auto stridedMetadata =
builder.create<memref::ExtractStridedMetadataOp>(loc, memref);
OpFoldResult linearizedIndices;
std::tie(std::ignore, linearizedIndices) =
memref::getLinearizedMemRefOffsetAndSize(
builder, loc, srcBits, srcBits,
stridedMetadata.getConstifiedMixedOffset(),
stridedMetadata.getConstifiedMixedSizes(),
stridedMetadata.getConstifiedMixedStrides(), indices);
return linearizedIndices;
}

namespace {

//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -218,32 +271,15 @@ struct ConvertMemRefLoad final : OpConversionPattern<memref::LoadOp> {
bitsLoad = rewriter.create<memref::LoadOp>(loc, adaptor.getMemref(),
ValueRange{});
} else {
SmallVector<OpFoldResult> indices =
getAsOpFoldResult(adaptor.getIndices());

auto stridedMetadata = rewriter.create<memref::ExtractStridedMetadataOp>(
loc, op.getMemRef());

// Linearize the indices of the original load instruction. Do not account
// for the scaling yet. This will be accounted for later.
OpFoldResult linearizedIndices;
std::tie(std::ignore, linearizedIndices) =
memref::getLinearizedMemRefOffsetAndSize(
rewriter, loc, srcBits, srcBits,
stridedMetadata.getConstifiedMixedOffset(),
stridedMetadata.getConstifiedMixedSizes(),
stridedMetadata.getConstifiedMixedStrides(), indices);

AffineExpr s0;
bindSymbols(rewriter.getContext(), s0);
int64_t scaler = dstBits / srcBits;
OpFoldResult scaledLinearizedIndices =
affine::makeComposedFoldedAffineApply(
rewriter, loc, s0.floorDiv(scaler), {linearizedIndices});
OpFoldResult linearizedIndices = getLinearizedSrcIndices(
rewriter, loc, srcBits, adaptor.getIndices(), op.getMemRef());

Value newLoad = rewriter.create<memref::LoadOp>(
loc, adaptor.getMemref(),
getValueOrCreateConstantIndexOp(rewriter, loc,
scaledLinearizedIndices));
getIndicesForLoadOrStore(rewriter, loc, linearizedIndices, srcBits,
dstBits));

// Get the offset and shift the bits to the rightmost.
// Note, currently only the big-endian is supported.
Expand Down Expand Up @@ -305,6 +341,63 @@ struct ConvertMemRefReinterpretCast final
}
};

//===----------------------------------------------------------------------===//
// ConvertMemrefStore
//===----------------------------------------------------------------------===//

struct ConvertMemrefStore final : OpConversionPattern<memref::StoreOp> {
using OpConversionPattern::OpConversionPattern;

LogicalResult
matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto convertedType = adaptor.getMemref().getType().cast<MemRefType>();
int srcBits = op.getMemRefType().getElementTypeBitWidth();
int dstBits = convertedType.getElementTypeBitWidth();
auto dstIntegerType = rewriter.getIntegerType(dstBits);
if (dstBits % srcBits != 0) {
return rewriter.notifyMatchFailure(
op, "only dstBits % srcBits == 0 supported");
}

Location loc = op.getLoc();
Value extendedInput = rewriter.create<arith::ExtUIOp>(loc, dstIntegerType,
adaptor.getValue());

// Special case 0-rank memref stores. No need for masking.
if (convertedType.getRank() == 0) {
rewriter.create<memref::AtomicRMWOp>(loc, arith::AtomicRMWKind::assign,
extendedInput, adaptor.getMemref(),
ValueRange{});
rewriter.eraseOp(op);
return success();
}

OpFoldResult linearizedIndices = getLinearizedSrcIndices(
rewriter, loc, srcBits, adaptor.getIndices(), op.getMemRef());
Value storeIndices = getIndicesForLoadOrStore(
rewriter, loc, linearizedIndices, srcBits, dstBits);
Value bitwidthOffset = getOffsetForBitwidth(loc, linearizedIndices, srcBits,
dstBits, rewriter);
Value writeMask = getSubByteWriteMask(loc, linearizedIndices, srcBits,
dstBits, bitwidthOffset, rewriter);
// Align the value to write with the destination bits
Value alignedVal =
rewriter.create<arith::ShLIOp>(loc, extendedInput, bitwidthOffset);

// Clear destination bits
rewriter.create<memref::AtomicRMWOp>(loc, arith::AtomicRMWKind::andi,
writeMask, adaptor.getMemref(),
storeIndices);
// Write srcs bits to destination
rewriter.create<memref::AtomicRMWOp>(loc, arith::AtomicRMWKind::ori,
alignedVal, adaptor.getMemref(),
storeIndices);
rewriter.eraseOp(op);
return success();
}
};

//===----------------------------------------------------------------------===//
// ConvertMemRefSubview
//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -350,9 +443,9 @@ void memref::populateMemRefNarrowTypeEmulationPatterns(
// Populate `memref.*` conversion patterns.
patterns.add<ConvertMemRefAllocation<memref::AllocOp>,
ConvertMemRefAllocation<memref::AllocaOp>, ConvertMemRefLoad,
ConvertMemRefAssumeAlignment, ConvertMemRefSubview,
ConvertMemRefReinterpretCast>(typeConverter,
patterns.getContext());
ConvertMemrefStore, ConvertMemRefAssumeAlignment,
ConvertMemRefSubview, ConvertMemRefReinterpretCast>(
typeConverter, patterns.getContext());
memref::populateResolveExtractStridedMetadataPatterns(patterns);
}

Expand Down
165 changes: 165 additions & 0 deletions mlir/test/Dialect/MemRef/emulate-narrow-type.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -265,3 +265,168 @@ func.func @memref_alloca_load_i4(%arg0: index) -> i4 {
// CHECK32: %[[SHIFTRT:.+]] = arith.shrsi %[[LOADVAL]], %[[CAST]]
// CHECK32: %[[TRUNC:.+]] = arith.trunci %[[SHIFTRT]] : i32 to i4
// CHECK32: return %[[TRUNC]]

// -----

func.func @memref_store_i4(%arg0: index, %arg1: i4) -> () {
%0 = memref.alloc() : memref<5xi4>
memref.store %arg1, %0[%arg0] : memref<5xi4>
return
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 floordiv 2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 * 4 - (s0 floordiv 2) * 8)>
// CHECK: func @memref_store_i4(
// CHECK-SAME: %[[ARG0:.+]]: index, %[[ARG1:.+]]: i4
// CHECK-DAG: %[[ALLOC:.+]] = memref.alloc() : memref<3xi8>
// CHECK-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG1]] : i4 to i8
// CHECK-DAG: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]]]
// CHECK-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]]]
// CHECK-DAG: %[[BITOFFSET_I8:.+]] = arith.index_cast %[[BITOFFSET]] : index to i8
// CHECK-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i8
// CHECK-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I8]] : i8
// CHECK-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i8
// CHECK-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i8
// CHECK-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I8]] : i8
// CHECK: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<3xi8>) -> i8
// CHECK: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<3xi8>) -> i8
// CHECK: return

// CHECK32-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 floordiv 8)>
// CHECK32-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 * 4 - (s0 floordiv 8) * 32)>
// CHECK32: func @memref_store_i4(
// CHECK32-SAME: %[[ARG0:.+]]: index, %[[ARG1:.+]]: i4
// CHECK32-DAG: %[[ALLOC:.+]] = memref.alloc() : memref<1xi32>
// CHECK32-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG1]] : i4 to i32
// CHECK32-DAG: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]]]
// CHECK32-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]]]
// CHECK32-DAG: %[[BITOFFSET_I32:.+]] = arith.index_cast %[[BITOFFSET]] : index to i32
// CHECK32-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i32
// CHECK32-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I32]] : i32
// CHECK32-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i32
// CHECK32-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i32
// CHECK32-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I32]] : i32
// CHECK32: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<1xi32>) -> i32
// CHECK32: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<1xi32>) -> i32
// CHECK32: return

// -----

func.func @memref_store_i4_rank2(%arg0: index, %arg1: index, %arg2: i4) -> () {
%0 = memref.alloc() : memref<3x125xi4>
memref.assume_alignment %0, 64 : memref<3x125xi4>
memref.store %arg2, %0[%arg0,%arg1] : memref<3x125xi4>
return
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> ((s0 * 125 + s1) floordiv 2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1] -> (s0 * 500 + s1 * 4 - ((s0 * 125 + s1) floordiv 2) * 8)>
// CHECK: func @memref_store_i4_rank2(
// CHECK-SAME: %[[ARG0:.+]]: index, %[[ARG1:.+]]: index, %[[ARG2:.+]]: i4
// CHECK-DAG: %[[ALLOC:.+]] = memref.alloc() : memref<188xi8>
// CHECK-DAG: memref.assume_alignment %[[ALLOC]], 64 : memref<188xi8>
// CHECK-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG2]] : i4 to i8
// CHECK-DAG: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]], %[[ARG1]]]
// CHECK-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]], %[[ARG1]]]
// CHECK-DAG: %[[BITOFFSET_I8:.+]] = arith.index_cast %[[BITOFFSET]] : index to i8
// CHECK-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i8
// CHECK-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I8]] : i8
// CHECK-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i8
// CHECK-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i8
// CHECK-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I8]] : i8
// CHECK: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<188xi8>) -> i8
// CHECK: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<188xi8>) -> i8
// CHECK: return

// CHECK32-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> ((s0 * 125 + s1) floordiv 8)>
// CHECK32-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1] -> (s0 * 500 + s1 * 4 - ((s0 * 125 + s1) floordiv 8) * 32)>
// CHECK32: func @memref_store_i4_rank2(
// CHECK32-SAME: %[[ARG0:.+]]: index, %[[ARG1:.+]]: index, %[[ARG2:.+]]: i4
// CHECK32-DAG: %[[ALLOC:.+]] = memref.alloc() : memref<47xi32>
// CHECK32-DAG: memref.assume_alignment %[[ALLOC]], 64 : memref<47xi32>
// CHECK32-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG2]] : i4 to i32
// CHECK32-DAG: %[[INDEX:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]], %[[ARG1]]]
// CHECK32-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP1]]()[%[[ARG0]], %[[ARG1]]]
// CHECK32-DAG: %[[BITOFFSET_I32:.+]] = arith.index_cast %[[BITOFFSET]] : index to i32
// CHECK32-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i32
// CHECK32-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I32]] : i32
// CHECK32-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i32
// CHECK32-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i32
// CHECK32-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I32]] : i32
// CHECK32: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<47xi32>) -> i32
// CHECK32: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<47xi32>) -> i32
// CHECK32: return

// -----

func.func @memref_store_i4_dynamic(%arg0: index, %arg1 : index, %arg2 : index, %arg3 : index, %arg4: i4) -> () {
%0 = memref.alloc(%arg0, %arg1) : memref<?x?xi4>
memref.store %arg4, %0[%arg2, %arg3] : memref<?x?xi4>
return
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> ((s0 * s1) floordiv 2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1, s2] -> ((s2 + s0 * s1) floordiv 2)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<()[s0, s1, s2] -> ((s0 * s1) * 4 + s2 * 4 - ((s2 + s0 * s1) floordiv 2) * 8)>
// CHECK: func @memref_store_i4_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: index
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: index
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: index
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: index
// CHECK-SAME: %[[ARG4:[a-zA-Z0-9]+]]: i4
// CHECK-DAG: %[[SIZE:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]], %[[ARG1]]]
// CHECK-DAG: %[[ALLOC:.+]] = memref.alloc(%[[SIZE]]) : memref<?xi8>
// CHECK-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG4]] : i4 to i8
// CHECK-DAG: %[[INDEX:.+]] = affine.apply #[[MAP1]]()[%[[ARG2]], %[[ARG1]], %[[ARG3]]]
// CHECK-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP2]]()[%[[ARG2]], %[[ARG1]], %[[ARG3]]]
// CHECK-DAG: %[[BITOFFSET_I8:.+]] = arith.index_cast %[[BITOFFSET]] : index to i8
// CHECK-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i8
// CHECK-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I8]] : i8
// CHECK-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i8
// CHECK-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i8
// CHECK-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I8]] : i8
// CHECK: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<?xi8>) -> i8
// CHECK: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i8, memref<?xi8>) -> i8
// CHECK: return

// CHECK32-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> ((s0 * s1) floordiv 8)>
// CHECK32-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1, s2] -> ((s2 + s0 * s1) floordiv 8)>
// CHECK32-DAG: #[[MAP2:.+]] = affine_map<()[s0, s1, s2] -> ((s0 * s1) * 4 + s2 * 4 - ((s2 + s0 * s1) floordiv 8) * 32)>
// CHECK32: func @memref_store_i4_dynamic(
// CHECK32-SAME: %[[ARG0:[a-zA-Z0-9]+]]: index
// CHECK32-SAME: %[[ARG1:[a-zA-Z0-9]+]]: index
// CHECK32-SAME: %[[ARG2:[a-zA-Z0-9]+]]: index
// CHECK32-SAME: %[[ARG3:[a-zA-Z0-9]+]]: index
// CHECK32-SAME: %[[ARG4:[a-zA-Z0-9]+]]: i4
// CHECK32-DAG: %[[SIZE:.+]] = affine.apply #[[MAP0]]()[%[[ARG0]], %[[ARG1]]]
// CHECK32-DAG: %[[ALLOC:.+]] = memref.alloc(%[[SIZE]]) : memref<?xi32>
// CHECK32-DAG: %[[EXTUI:.+]] = arith.extui %[[ARG4]] : i4 to i32
// CHECK32-DAG: %[[INDEX:.+]] = affine.apply #[[MAP1]]()[%[[ARG2]], %[[ARG1]], %[[ARG3]]]
// CHECK32-DAG: %[[BITOFFSET:.+]] = affine.apply #[[MAP2]]()[%[[ARG2]], %[[ARG1]], %[[ARG3]]]
// CHECK32-DAG: %[[BITOFFSET_I32:.+]] = arith.index_cast %[[BITOFFSET]] : index to i32
// CHECK32-DAG: %[[MASK_BASE:.+]] = arith.constant 15 : i32
// CHECK32-DAG: %[[MASK_SHIFTED:.+]] = arith.shli %[[MASK_BASE]], %[[BITOFFSET_I32]] : i32
// CHECK32-DAG: %[[CST_NEG_ONE:.+]] = arith.constant -1 : i32
// CHECK32-DAG: %[[MASK:.+]] = arith.xori %[[MASK_SHIFTED]], %[[CST_NEG_ONE]] : i32
// CHECK32-DAG: %[[SHIFTED_VAL:.+]] = arith.shli %[[EXTUI]], %[[BITOFFSET_I32]] : i32
// CHECK32: %[[CLEAR_RMW:.+]] = memref.atomic_rmw andi %[[MASK]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<?xi32>) -> i32
// CHECK32: %[[WRITE_RMW:.+]] = memref.atomic_rmw ori %[[SHIFTED_VAL]], %[[ALLOC]][%[[INDEX]]] : (i32, memref<?xi32>) -> i32
// CHECK32: return

// -----

func.func @rank_zero_memref_store(%arg0: i4) -> () {
%0 = memref.alloc() : memref<i4>
memref.store %arg0, %0[] : memref<i4>
return
}
// CHECK-LABEL: func @rank_zero_memref
// CHECK-SAME: %[[ARG0:.+]]: i4
// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<i8>
// CHECK: %[[EXTUI:.+]] = arith.extui %[[ARG0]] : i4 to i8
// CHECK: %[[WRITE_RMW:.+]] = memref.atomic_rmw assign %[[EXTUI]], %[[ALLOC]][] : (i8, memref<i8>) -> i8
// CHECK: return

// CHECK32-LABEL: func @rank_zero_memref
// CHECK32-SAME: %[[ARG0:.+]]: i4
// CHECK32: %[[ALLOC:.+]] = memref.alloc() : memref<i32>
// CHECK32: %[[EXTUI:.+]] = arith.extui %[[ARG0]] : i4 to i32
// CHECK32: %[[WRITE_RMW:.+]] = memref.atomic_rmw assign %[[EXTUI]], %[[ALLOC]][] : (i32, memref<i32>) -> i32
// CHECK32: return