Skip to content

[mlir][sve] Add an e2e for linalg.matmul with mixed types #73773

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 6 additions & 8 deletions mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -455,7 +455,7 @@ struct ReorderCastOpsOnBroadcast

Type castResTy = getElementTypeOrSelf(op->getResult(0));
if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType()))
castResTy = VectorType::get(vecTy.getShape(), castResTy);
castResTy = vecTy.clone(castResTy);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should think about a long term solution for this beyond these fixes.

auto *castOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
bcastOp.getSource(), castResTy, op->getAttrs());
Expand Down Expand Up @@ -527,16 +527,14 @@ struct ReorderElementwiseOpsOnTranspose final
srcValues.push_back(transposeOp.getVector());
} else {
// This is a constant. Create a reverse transpose op for it.
auto vectorType = VectorType::get(
srcType.getShape(),
cast<VectorType>(operand.getType()).getElementType());
auto vectorType =
srcType.clone(cast<VectorType>(operand.getType()).getElementType());
srcValues.push_back(rewriter.create<vector::TransposeOp>(
operand.getLoc(), vectorType, operand, invOrder));
}
}

auto vectorType = VectorType::get(
srcType.getShape(),
auto vectorType = srcType.clone(
cast<VectorType>(op->getResultTypes()[0]).getElementType());
Operation *elementwiseOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
Expand Down Expand Up @@ -1314,8 +1312,8 @@ struct CanonicalizeContractMatmulToMMT final
Value trans =
rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm);
VectorType newType =
VectorType::get(cast<VectorType>(trans.getType()).getShape(),
cast<VectorType>(mat.getType()).getElementType());
cast<VectorType>(trans.getType())
.clone(cast<VectorType>(mat.getType()).getElementType());
return rewriter.create<arith::ExtSIOp>(loc, newType, trans);
}
if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize -func-bufferize -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \
// DEFINE: -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = matmul_mixed_ty
// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils

// RUN: %{compile}

// RUN: %{run} | FileCheck %s

func.func @matmul_mixed_ty() {
// Matrix dimensions
%K = arith.constant 3 : index
%M = arith.constant 5 : index
%N = arith.constant 15 : index
%c0_i8 = arith.constant 0 : i8
%c0_i32 = arith.constant 0 : i32

// Allocate the matrices
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xi8>
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xi8>
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xi32>

// Initialise the matrices
%pi = arith.constant 123 : i8
%A = linalg.fill ins(%pi : i8) outs(%A_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%B = linalg.fill ins(%pi : i8) outs(%B_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%C_in = linalg.fill ins(%c0_i32 : i32) outs(%C_alloc : tensor<?x?xi32>) -> tensor<?x?xi32>

// Matmul
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) outs(%C_in: tensor<?x?xi32>) -> tensor<?x?xi32>

// Print and verify the output
// CHECK-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT"

// CHECK-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// CHECK-COUNT-5: [45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387]
%xf = tensor.cast %C_out : tensor<?x?xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()

// CHECK-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module
: (!transform.any_op) -> !transform.any_op

// Step 1: Tile
%module_with_tiled_loops, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)

// Step 2: Vectorize
%tiled_matmul = transform.structured.match ops{["linalg.matmul"]} in %module_with_tiled_loops
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op

// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns)
%func = transform.structured.match ops{["func.func"]} in %module
: (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.transfer_permutation_patterns
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.op<"func.func">

// Step 4: Lower vector.contract to vector.fma
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
transform.apply_patterns.vector.lower_outerproduct
} : !transform.op<"func.func">

transform.yield
}
}

func.func private @printMemrefI32(%ptr : tensor<*xi32>)