-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sve] Add an e2e for linalg.matmul with mixed types #73773
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
banach-space
merged 1 commit into
llvm:main
from
banach-space:andrzej/add_mixed_type_test
Nov 29, 2023
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
83 changes: 83 additions & 0 deletions
83
mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul_mixed_ty.mlir
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
// DEFINE: %{compile} = mlir-opt %s \ | ||
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \ | ||
// DEFINE: -one-shot-bufferize -func-bufferize -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \ | ||
// DEFINE: -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm -o %t | ||
// DEFINE: %{entry_point} = matmul_mixed_ty | ||
// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\ | ||
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils | ||
|
||
// RUN: %{compile} | ||
|
||
// RUN: %{run} | FileCheck %s | ||
|
||
func.func @matmul_mixed_ty() { | ||
// Matrix dimensions | ||
%K = arith.constant 3 : index | ||
%M = arith.constant 5 : index | ||
%N = arith.constant 15 : index | ||
%c0_i8 = arith.constant 0 : i8 | ||
%c0_i32 = arith.constant 0 : i32 | ||
|
||
// Allocate the matrices | ||
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xi8> | ||
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xi8> | ||
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xi32> | ||
|
||
// Initialise the matrices | ||
%pi = arith.constant 123 : i8 | ||
%A = linalg.fill ins(%pi : i8) outs(%A_alloc : tensor<?x?xi8>) -> tensor<?x?xi8> | ||
%B = linalg.fill ins(%pi : i8) outs(%B_alloc : tensor<?x?xi8>) -> tensor<?x?xi8> | ||
%C_in = linalg.fill ins(%c0_i32 : i32) outs(%C_alloc : tensor<?x?xi32>) -> tensor<?x?xi32> | ||
|
||
// Matmul | ||
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) outs(%C_in: tensor<?x?xi32>) -> tensor<?x?xi32> | ||
|
||
// Print and verify the output | ||
// CHECK-LABEL: SVE: START OF TEST OUTPUT | ||
vector.print str "SVE: START OF TEST OUTPUT" | ||
|
||
// CHECK-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data = | ||
// CHECK-COUNT-5: [45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387] | ||
%xf = tensor.cast %C_out : tensor<?x?xi32> to tensor<*xi32> | ||
call @printMemrefI32(%xf) : (tensor<*xi32>) -> () | ||
|
||
// CHECK-NEXT: SVE: END OF TEST OUTPUT | ||
vector.print str "SVE: END OF TEST OUTPUT" | ||
|
||
return | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) { | ||
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module | ||
: (!transform.any_op) -> !transform.any_op | ||
|
||
// Step 1: Tile | ||
%module_with_tiled_loops, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1] | ||
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) | ||
|
||
// Step 2: Vectorize | ||
%tiled_matmul = transform.structured.match ops{["linalg.matmul"]} in %module_with_tiled_loops | ||
: (!transform.any_op) -> !transform.any_op | ||
transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op | ||
|
||
// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns) | ||
%func = transform.structured.match ops{["func.func"]} in %module | ||
: (!transform.any_op) -> !transform.op<"func.func"> | ||
transform.apply_patterns to %func { | ||
transform.apply_patterns.vector.reduction_to_contract | ||
transform.apply_patterns.vector.transfer_permutation_patterns | ||
transform.apply_patterns.vector.lower_masked_transfers | ||
} : !transform.op<"func.func"> | ||
|
||
// Step 4: Lower vector.contract to vector.fma | ||
transform.apply_patterns to %func { | ||
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct" | ||
transform.apply_patterns.vector.lower_outerproduct | ||
} : !transform.op<"func.func"> | ||
|
||
transform.yield | ||
} | ||
} | ||
|
||
func.func private @printMemrefI32(%ptr : tensor<*xi32>) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We should think about a long term solution for this beyond these fixes.