Skip to content

[mlir][linalg] Fix weight dimension ordering in 2D grouped conv #73855

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 100 additions & 1 deletion mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2911,7 +2911,106 @@ structured_op: !LinalgStructuredOpConfig
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s11, s1, s3, s7)>
(s0, s1, s11, s3, s7)>
- !LinalgOperandDefConfig
name: strides
kind: index_attr
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s4, s8)>
default_indices:
- 1
- 1
- !LinalgOperandDefConfig
name: dilations
kind: index_attr
index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s6, s10)>
default_indices:
- 1
- 1
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d0, d1, d5, d3 * s4 + d6 * s6, d4 * s8 + d7 * s10)>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d2, d1, d5, d6, d7)>
- affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11] -> (d0, d1, d2, d3, d4)>
iterator_types:
- parallel
- parallel
- parallel
- parallel
- parallel
- reduction
- reduction
- reduction
assignments:
- !ScalarAssign
arg: O
value: !ScalarExpression
scalar_fn:
kind: binary
fn_name: add
operands:
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: mul
operands:
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d_ngchw_gfchw
cpp_class_name: Conv2DNgchwGfchwOp
doc: |-
Performs 2-D grouped convolution.
Layout:
* Input: NGCHW.
* Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
implements:
- LinalgConvolutionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: I
kind: input_tensor
type_var: T1
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s2, s3 * s4 + s5 * s6, s7 * s8 + s9 * s10)>
- !LinalgOperandDefConfig
name: K
kind: input_tensor
type_var: T2
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s1, s11, s2, s5, s9)>
- !LinalgOperandDefConfig
name: O
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s11, s3, s7)>
- !LinalgOperandDefConfig
name: strides
kind: index_attr
Expand Down
28 changes: 27 additions & 1 deletion mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -780,7 +780,7 @@ def conv_2d_ngchw_fgchw(
T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW
),
K=TensorDef(T2, S.FG, S.G, S.C, S.KH, S.KW),
O=TensorDef(U, S.N, S.FG, S.G, S.OH, S.OW, output=True),
O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True),
strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]),
):
Expand All @@ -790,6 +790,32 @@ def conv_2d_ngchw_fgchw(
* Input: NGCHW.
* Kernel: FGCHW.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
implements(ConvolutionOpInterface)
domain(D.n, D.g, D.fg, D.oh, D.ow, D.c, D.kh, D.kw)
O[D.n, D.g, D.fg, D.oh, D.ow] += TypeFn.cast_signed(
U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW]
) * TypeFn.cast_signed(U, K[D.fg, D.g, D.c, D.kh, D.kw])


@linalg_structured_op
def conv_2d_ngchw_gfchw(
I=TensorDef(
T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW
),
K=TensorDef(T2, S.G, S.FG, S.C, S.KH, S.KW),
O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True),
strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]),
):
"""Performs 2-D grouped convolution.
Layout:
* Input: NGCHW.
* Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
Expand Down
32 changes: 32 additions & 0 deletions mlir/test/Dialect/Linalg/named-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -409,6 +409,38 @@ func.func @conv_2d_ngchw_fgchw(%input: memref<?x?x?x?x?xf32>, %filter: memref<?x

// -----

// CHECK-LABEL: func @conv_2d_ngchw_fgchw_dimensions
func.func @conv_2d_ngchw_fgchw_dimensions(%input: tensor<1x5x3x32x32xf32>, %filter: tensor<2x5x3x3x3xf32>, %init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> {
// CHECK: linalg.conv_2d_ngchw_fgchw
// CHECK-SAME: dilations = dense<1> : tensor<2xi64>
// CHECK-SAME: strides = dense<1> : tensor<2xi64>
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x5x3x32x32xf32>, tensor<2x5x3x3x3xf32>)
// CHECK-SAME: outs(%{{.+}} : tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32>
%0 = linalg.conv_2d_ngchw_fgchw {dilations = dense<1> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>}
ins (%input, %filter: tensor<1x5x3x32x32xf32>, tensor<2x5x3x3x3xf32>)
outs (%init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32>
return %0 : tensor<1x5x2x30x30xf32>
}

// -----

// CHECK-LABEL: func @conv_2d_ngchw_gfchw
func.func @conv_2d_ngchw_gfchw(%input: tensor<1x5x3x32x32xf32>, %filter: tensor<5x2x3x3x3xf32>, %init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> {
// CHECK: linalg.conv_2d_ngchw_gfchw
// CHECK-SAME: dilations = dense<1> : tensor<2xi64>
// CHECK-SAME: strides = dense<1> : tensor<2xi64>
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x5x3x32x32xf32>, tensor<5x2x3x3x3xf32>)
// CHECK-SAME: outs(%{{.+}} : tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32>
%0 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>}
ins (%input, %filter: tensor<1x5x3x32x32xf32>, tensor<5x2x3x3x3xf32>)
outs (%init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32>
return %0 : tensor<1x5x2x30x30xf32>
}

// -----

// CHECK-LABEL: func @conv_3d_ndhwc_dhwcf
func.func @conv_3d_ndhwc_dhwcf(%input: tensor<?x?x?x?x?xf32>, %filter: tensor<?x?x?x?x?xf32>, %init: tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32> {
// CHECK: %{{.+}} = linalg.conv_3d_ndhwc_dhwcf
Expand Down