Skip to content

[mlir][tensor] Fold padding_value away for pack ops when possible. #74005

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 33 additions & 10 deletions mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
Expand Down Expand Up @@ -3800,17 +3801,39 @@ static bool haveSameTiles(PackOp packOp, UnPackOp unPackOp) {
return true;
}

/// Fold an unpack(pack(x)) to x.
/// Returns true if the pack op does not need a padding value.
static bool paddingIsNotNeeded(PackOp op) {
auto srcType = op.getSourceType();
if (llvm::any_of(op.getInnerDimsPos(),
[&](int64_t pos) { return srcType.isDynamicDim(pos); }))
return false;
if (ShapedType::isDynamicShape(op.getStaticInnerTiles()))
return false;
return !PackOp::requirePaddingValue(srcType.getShape(), op.getInnerDimsPos(),
op.getMixedTiles());
}

LogicalResult PackOp::canonicalize(PackOp packOp, PatternRewriter &rewriter) {
UnPackOp unPackOp = packOp.getSource().getDefiningOp<UnPackOp>();
if (!unPackOp || unPackOp.getSourceType() != packOp.getDestType())
return failure();
if (packOp.getPaddingValue() ||
!hasSameInnerOuterAttribute(packOp, unPackOp) ||
!haveSameTiles(packOp, unPackOp))
return failure();
rewriter.replaceOp(packOp, unPackOp.getSource());
return success();
// Fold an unpack(pack(x)) to x.
if (auto unPackOp = packOp.getSource().getDefiningOp<UnPackOp>()) {
if (unPackOp.getSourceType() != packOp.getDestType())
return failure();
if (packOp.getPaddingValue() ||
!hasSameInnerOuterAttribute(packOp, unPackOp) ||
!haveSameTiles(packOp, unPackOp))
return failure();
rewriter.replaceOp(packOp, unPackOp.getSource());
return success();
}

// Fold optional PaddingValue operand away if padding is not needed.
if (packOp.getPaddingValue() && paddingIsNotNeeded(packOp)) {
rewriter.startRootUpdate(packOp);
packOp.getPaddingValueMutable().clear();
rewriter.finalizeRootUpdate(packOp);
return success();
}
return failure();
}

template <typename PackOrUnpackOp>
Expand Down
65 changes: 65 additions & 0 deletions mlir/test/Dialect/Tensor/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -719,6 +719,71 @@ func.func @fold_pack_constant_splat(%dest : tensor<8x16x8x32xf32>) -> tensor<8x1

// -----

func.func @fold_padding_value_pack(%arg0: tensor<1200x500000xf32>) -> tensor<31250x1200x16x1xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<31250x1200x16x1xf32>
%pack = tensor.pack %arg0
padding_value(%cst : f32)
outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0]
inner_tiles = [16, 1]
into %0 : tensor<1200x500000xf32> -> tensor<31250x1200x16x1xf32>
return %pack : tensor<31250x1200x16x1xf32>
}
// CHECK-LABEL: func @fold_padding_value_pack
// CHECK-NOT: padding_value

// -----

func.func @fold_padding_value_pack_negative1(%arg0: tensor<1200x499999xf32>) -> tensor<31250x1200x16x1xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<31250x1200x16x1xf32>
%pack = tensor.pack %arg0
padding_value(%cst : f32)
outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0]
inner_tiles = [16, 1]
into %0 : tensor<1200x499999xf32> -> tensor<31250x1200x16x1xf32>
return %pack : tensor<31250x1200x16x1xf32>
}
// CHECK-LABEL: func @fold_padding_value_pack_negative1
// CHECK: tensor.pack
// CHECK-SAME: padding_value

// -----

func.func @fold_padding_value_pack_negative2(%arg0: tensor<1200x?xf32>, %arg1: tensor<?x1200x16x1xf32>) -> tensor<?x1200x16x1xf32> {
%cst = arith.constant 0.000000e+00 : f32
%pack = tensor.pack %arg0
padding_value(%cst : f32)
outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0]
inner_tiles = [16, 1]
into %arg1 : tensor<1200x?xf32> -> tensor<?x1200x16x1xf32>
return %pack : tensor<?x1200x16x1xf32>
}
// CHECK-LABEL: func @fold_padding_value_pack_negative2
// CHECK: tensor.pack
// CHECK-SAME: padding_value

// -----

func.func @fold_padding_value_pack_negative3(%arg0: tensor<1200x500000xf32>, %arg1: tensor<?x1200x?x1xf32>, %tile : index) -> tensor<?x1200x?x1xf32> {
%cst = arith.constant 0.000000e+00 : f32
%pack = tensor.pack %arg0
padding_value(%cst : f32)
outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0]
inner_tiles = [%tile, 1]
into %arg1 : tensor<1200x500000xf32> -> tensor<?x1200x?x1xf32>
return %pack : tensor<?x1200x?x1xf32>
}
// CHECK-LABEL: func @fold_padding_value_pack_negative3
// CHECK: tensor.pack
// CHECK-SAME: padding_value

// -----

// CHECK-LABEL: func @fold_unpack_constant_splat
// CHECK-NOT: tensor.unpack
// CHECK: arith.constant dense<1.000000e-01> : tensor<128x256xf32>
Expand Down